Spin Transport & Scattering in Ferromagnetic Semiconductor Heterostructures

Outline

- Controlling spins in semiconductor heterostructures: overview
- Spin transport & scattering in (Ga,Mn)As devices:
 - Non-collinear spin valve effect in trilayer devices (Xiang et al, in preparation)
 - Pinning and controlling domain walls at constrictions & interfaces (Eid et al, in preparation)
- Interfacial control of ferromagnetism in (Ga,Mn)As
 - Exchange biasing of (Ga,Mn)As by MnO (Eid et al., APL 85, 1556 [2004], Eid et al. J. Appl. Phys. 97, 10D304 [2005])
 - Nanoengineered T_C in submicron (Ga,Mn)As wires (Eid et al, APL 86, 152505 [2005])

Hybrid Structures for Spintronics

Epitaxial integration and patterning of magnetic materials with established growth/processing protocols

- paramagnetic semiconductors
- ferromagnetic semiconductors
- ferromagnetic metals
- antiferromagnets

Frustrated magnetic arrays of Py mesas

II-VI microdisk on ~100nm diameter AlGaAs pedestal

Submicron (Ga,Mn)As device For domain wall pinning

Towards Semiconductor Spintronics - I

Create, control & detect spin polarization of electrons/holes in semiconductors

- Electric fields
- Exchange interactions

Electrically controlled spin dynamics

Parabolic potential using (Zn,Cd)Se "digital alloy"; Mn ions in center.

Myers et al, PRB **72**, 041302(R) [2005])

Towards Semiconductor Spintronics - II

Create, control & detect spin polarization of electrons/holes in semiconductors

- Electric fields
- Exchange interactions
- Circularly polarized photons

Q-factor engineering of electron spin coherence in GaAs/ GaAlAs microdisk lasers

Ghosh, Wang et al, Nature (Materials), **56** (2006)

Towards Semiconductor Spintronics -- III

Exploit spin transport in both conventional and magnetic semiconductors

- Spin injection & spin polarized transport
- Spin Hall effect
- Unipolar spin diodes & transistors (Flatte & Vignale)
- Magnetic bipolar transistors (Flatte et al, Zutic et al)

Need to control:

- Switching field of different device elements via
 - Shape anisotropy
 - Magneto-crystalline anisotropy, strain
 - Exchange bias
- Domain wall locations
 - Pinned: fixed architecture
 - Moveable: reconfigurable
 (Holleitner et al., 2004, Yamounichi et al. 2004)

Ga_{1-x}Mn_xAs: the "canonical" ferromagnetic semiconductor

Ku et al., APL **82**, 2302 (2003)

- Hole-mediated ferromagnetism: Mn^{2+} (S = 5/2) in zinc-blende GaAs lattice
- Low temperature MBE: Mn interstitial & As antisite defects (donors)
- Post-growth annealing: Mn interstitials to free surface of sample [Yu et al., PRB (2002), Edmonds et al, PRL (2004)]
- T_C can be increased up to ~170 K. (~240 K? Tanaka)
- Origin of ferromagnetism: impurity band (e.g, Burch et al, 2006)

Annealing Effects are Suppressed in Heterostructures!

M. B. Stone et al. Appl. Phys. Lett. **83**, 4568 (2003)

See also: Chiba et al, APL (2003)

GaAs

(Ga,Mn)As GaAs

- Capping (Ga,Mn)As with a thin epitaxial layer of GaAs suppresses beneficial aspects of annealing
- Diffusing interstitials (donors) create pn junction at interface?

I. Non-collinear spin valve effect in ferromagnetic semiconductor trilayer devices

With **G. Xiang**, M. Zhu, B. L. Sheu, & P. Schiffer (in preparation)

Searching for the spin valve effect in (Ga,Mn)As devices

VOLUME 61, NUMBER 21

PHYSICAL REVIEW LETTERS

21 NOVEMBER 1988

Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superlattices

M. N. Baibich, (a) J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff Laboratoire de Physique des Solides, Université Paris-Sud, F-91405 Orsay, France

P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas

Laboratoire Central de Recherches, Thomson CSF, B.P. 10, F-91401 Orsay, France
(Received 24 August 1988)

We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example, with $t_{\rm Cr} = 9$ Å, at T = 4.2 K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T. We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.

PACS numbers: 75.50.Rr, 72.15.Gd, 75.70.Cn

In (Ga,Mn)As:

- Short hole spin diffusion length (~few nm)
- Short elastic mean free path (<2 nm)
- Strong magnetoresistance

 (anisotropic
 magnetoresistance, anomalous
 Hall effect, planar Hall effect)

$$\frac{\Delta R}{R} = \frac{(\alpha - 1)^2}{4(\alpha + pd_{NM} / d_{FM})(1 + pd_{NM} / d_{FM})}$$

Key Factors:

•
$$\alpha = \rho_{\downarrow}/\rho_{\uparrow}$$

• p =
$$\rho_{NM}/\rho_{\uparrow}$$

Spin Valve Effect in Ferromagnetic Semiconductor Trilayers

120 minute anneal

- Trilayer devices wherein ferromagnetic layers & spacer layer have comparable conductivity
- Annealing creates distinct H_C for upper/lower GaMnAs layers
- Speculate that annealing also produces spin-dependent scattering at interfaces
- Spacer thickness varied: 2 nm, 5 nm & 10 nm
- Annealing time varied for 5 nm spacer

Spin Valve Effect in Ferromagnetic Semiconductor Trilayers

- **Planar Hall effect** tracks magnetization orientation: magnetization of each layer switches by 90⁰
- Comparison between PHE and MR shows non-collinear spin valve effect: enhanced resistance for orthogonal magnetization orientation
- Unusual "structure" due to interplay between AMR and spin valve effect

GaMnAs
GaAs:Be
GaMnAs

Magnetoresistance in trilayers: spacer thickness dependence

All devices annealed at 190°C for 1 hr

- Sample A (2nm spacer) MR similar to single FM layer's
- Sample B (5nm spacer) MR --> positive ΔR
- Sample C (10nm spacer) MR looks like addition of two FMs

II. Pinning, measuring and controlling domain walls in patterned (Ga,Mn)As devices

With **K. F. Eid,** G. Xiang, A. Balk, B. L. Sheu, O. Maksimov, & P. Schiffer (in preparation)

Pinning & detecting domain walls in (Ga,Mn)As

Pinning & detecting domain walls in (Ga,Mn)As

Submicron (Ga,Mn)As device for domain wall pinning

- Circulating currents in vicinity of pinned DW
- Longitudinal MR is antisymmetric in magnetic field due to R_{xy} (anomalous Hall effect) contribution to R_{xx}
- Note: intrinsic DW resistance negligible (Chiba et al 2006, Tang et al 2004)

Electrically manipulating domain walls in (Ga,Mn)As devices

GaMnAs InGaAs GaAs 30 nm GaMnAs 1mm GaInAs GaAs substrate

- Lateral channel size: 20 μm;
 middle element: 40 μm long
- Vertical etching steps define (Ga,Mn)As elements with different coercivity (Yamounichi et al, Science 2004)
- Current pulses of 100 ms width sent in alternating "up" & "down" sequence at 20 s intervals
- Monitor switching of middle element via anomalous Hall effect
- Note: DW motion is opposite to direction of current pulse

Electrically manipulating domain walls in (Ga,Mn)As devices

- Typical current density required to completely switch middle element (at 70 K) ~ 2 x 10⁴ A/cm²
- Caveat: details of switching threshold very dependent on device processing, thermal history, etc.

GaMnAs InGaAs GaAs 30 nm GaMnAs 1mm GaInAs GaAs substrate

 $T = 65 \text{ K}; I_P = 150 \mu\text{A}$

- Often find different threshold current density depending on initial state
- Caveat: details of switching threshold very dependent on device processing, thermal history, etc.

III. Exchange biasing of (Ga,Mn)As

With K. F. Eid, M. B. Stone, K. C. Ku, O. Maksimov T. Shih, C. Palmstrom & P. Schiffer Appl. Phys. Lett. **85**, 1556 [2004] J. Appl. Phys. **97**, 10D304 [2005]

Exchange Biasing

- Meikeljohn (1956): unidirectional anisotropy when FM/AF bilayer ($T_N < T_C$) is field cooled from T < T_C to T < $T_B < T_N$
- Magnetization hysteresis loop shifts in direction opposite to cooling field & widens below "blocking temperature" (T_B)
- Critical for spintronic devices e.g. spin valves & magnetic tunnel junctions

Exchange biasing of (Ga,Mn)As by MnO

4 nm MnO

10 nm GaMnAs

$$H_E = -\frac{H_{C-} - H_{C+}}{2}$$

$$\Delta E = H_E t_{FM} M_{FM}$$

$$\approx 3 \times 10^{-3} \text{ erg/cm}^2$$

- Exchange coupling of (Ga,Mn)As with MnO: bias in field cooled hysteresis loop + increased coercivity; no effect when zero field cooled.
- Sign of bias is reversed when cooling field is reversed

Temperature Dependence of Coercive & Exchange Fields

- Curie temperature (T_C)
 determined from temperature
 variation of remanent
 magnetization M(T)
- Blocking temperature (T_B)
 determined from temperature
 variation of exchange bias field
 H_E(T)
- Both cases are unconventional examples of exchange bias: T_C <
 T_N
- Note comparison with blocking temperature:
 - Upper panel: T_C ~ T_B
 - Lower panel: T_C >> T_B

IV. Nanoengineered Curie Temperature in Laterally Patterned (Ga,Mn)As Heterostructures

With K. F. Eid, B. L. Sheu, O. Maksimov, M. B. Stone & P. Schiffer

Appl. Phys. Lett. **86**, 152505 [2005]

Can annealing yield (Ga,Mn)As devices operating at T >> 77 K?

- Devices typically involve "buried" layers of (Ga,Mn)As [e.g. magnetic tunnel junctions]
- Early studies of annealing such devices showed no improvements in T_C

Nanoengineering of Defect Diffusion Pathways

Cap layer thicknesses as small as 7 monolayers completely suppress annealing enhanced T_{C...}

Lithography of (Ga,Mn)As Nanowires

- Fabrication of (Ga,Mn)As nanowires using e-beam lithography & dry etching.
- Wire length 5 10 μm, widths 70 nm 1μm
- Wire orientations along different principal crystalline axes: test for possible anisotropy
- Measure Curie temperature in single wire before and after annealing (at 180° C) using temperature dependent resistivity [peak in resistivity close to $T_{\rm C}$]

Control measurements: unprocessed samples

Aside: origin of resistivity peak at T_C still subject of debate (see e.g. Timm, Raikh, Oppen PRL 94, 036602 [2005])

- Peak in $\rho(T)$ closely correlated with $T_{\rm C}$ as measured by M(T).
- Unprocessed sample: $T_{\rm C}$ ~ 60 K both before and after annealing as expected from earlier studies.

Enhancement of T_C in Nanowires

- 1µm width wire shows very slight increase $(\Delta T_{\rm C} \sim 5 10 \text{ K})$
- 70 nm wires show large increase (ΔT_C ~ 40 - 60 K)
- No observable dependence of defect diffusion on crystalline direction -- wires patterned along different crystalline axes show similar enhancements of T_C.

Dependence of T_C on annealing time and on wire width

(B. L. Sheu et al, J. Appl. Phys. [2006])

Dependence of conductivity on annealing time and on wire width

- Variation of Curie temperature with annealing time & wire width correlates well with variation of conductivity.
- Can this be interpreted using simple diffusion models?

1D model for vertical outdiffusion of defects (e.g. Tuck (1974))

Edmonds et al, PRL (2004)

Assumption: change of conductivity entirely caused by increase in hole density

$$\sigma(t) = \sigma_0 - \sigma_1 n(t)$$

$$n(t) = \frac{N}{L} \frac{1}{\sqrt{4\pi Dt}} \iint \exp \left[-\frac{(x-x')^2}{4Dt} \right] dx dx'$$

Model for lateral interstitial diffusion?

$$\frac{d\sigma}{dt} = f\left(\frac{t}{L^2}\right)???$$

- Data for lateral diffusion is inconsistent with naïve diffusion model
- Implies that diffusion constant decreases dramatically with wire width
- Caveat: conductivity determined by both hole density & mobility -depletion effects + surface properties can modify mobility drastically

Outline

- Controlling spins in semiconductor heterostructures: overview
- Spin transport & scattering in (Ga,Mn)As devices:
 - Non-collinear spin valve effect in trilayer devices
 - Pinning and controlling domain walls at constrictions & interfaces
- Interfacial control of ferromagnetism in (Ga,Mn)As
 - Exchange biasing of (Ga,Mn)As by MnO (Eid et al., APL 85, 1556 [2004], Eid et al. J. Appl. Phys. 97, 10D304 [2005])
 - Nanoengineered T_C in submicron (Ga,Mn)As wires (Eid et al, APL 86, 152505 [2005])