# Do we understand (Ga,Mn)As?: prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors

Jairo Sinova
Texas A &M University

References: Jungwirth et al Phys. Rev. B 72, 165204 (2005) and Jungwirth et al, *Theory of ferromagnetic (III,Mn)V semiconductors,* to appear in Rev. of Mod. Phys. (2006).



# THE TEAM



**U** of Texas



**Tomas Jungwirth** Inst. of Phys. ASCR **U. of Nottingham** 



**Jairo Sinova** Texas A&M Univ.

J. Masek, J. Kuzera, N.A. Goncharuk (Institute of Physics ASCR, Czech Republic), K.Y. Wang, K.W. Edmonds, A.W. Rushforth, R.P. Campion, L.X. Zhao, C.T. Foxon, B.L. Gallagher (U. of Nottingham) M. Polini (NEST-INFM, Pisa), M. Sawicki (Polish Academy of Science), J. Koenig (Ruhr-Universitat), Ewelina Hankiewicz (U. of Missouri)

# OUTLINE

- DMS: intro to the phenomenology
  - Possible stumbling blocks to high Tc
  - Theoretical approaches to DMSs
- What is theory telling us about Tc trends
  - Is there an intrinsic limitation
  - Extrinsic limitations
- What is the data telling us: thumbs up or down?
- Other successful descriptions of system properties
  - Magnetic anisotropy
  - Temperature dependence of transport in metallic samples
  - Magnetization dynamics
  - Domain wall dynamics and resistances
  - Anisotropic magnetoresistance
  - TAMR
  - Anomalous Hall effect
- Remaining challenges:
  - Red shift in IR absorption peak
  - Seemingly large effective masses

Department of Physics, Texas A&M University

## **Problems for GaMnAs (late 2002)**

- Curie temperature limited to ~110K.
- Only metallic for ~3% to 6% Mn
- High degree of compensation
- Unusual magnetization (temperature dep.)
- Significant magnetization deficit

"110K could be a *fundamental limit* on T<sub>c</sub>"



But are these intrinsic properties of GaMnAs ??

## (Ga,Mn)As diluted magnetic semiconductor

#### Low-T MBE - random but nearly uniform Mn distribution up to ~ 10% doping



25

## **Theoretical descriptions**

Microscopic: atomic orbitals & Coulomb correlation of d-electrons & hopping



**Effective magnetic coupling:** 



Coulomb correlation of d-electrons & hopping  $\rightarrow$ AF kinetic-exchange coupling

# Which theory is right? High noon at KITP:

**Impurity bandit vs Valence Joe** 



**KP Eastwood** 

**Fast principles Jack** 







# Theoretical Approaches to DMSs

# First Principles LSDA

PROS: No initial assumptions, effective Heisenberg model can be extracted, good for determining chemical trends

CONS: Size limitation, difficulty dealing with long range interactions, lack of quantitative predictability, neglects SO coupling (usually)

# Microscopic TB models

PROS: "Unbiased" microscopic approach, correct capture of band structure and hybridization, treats disorder microscopically (combined with CPA), very good agreement with LDA+U calculations

CONS: neglects coulomb interaction effects, difficult to capture non-tabulated chemical trends, hard to reach large system sizes

# k.p ⊕ Local Moment

PROS: simplicity of description, lots of computational ability, SO coupling can be incorporated,

CONS: applicable only for metallic weakly hybridized systems (e.g. optimally doped GaMnAs), over simplicity (e.g. constant Jpd), no good for deep impurity levels (e.g. GaMnN)

# OUTLINE

- DMS: intro to the phenomenology
  - Possible stumbling blocks to high Tc
  - Theoretical approaches to DMSs
- What is theory telling us about Tc trends
  - Is there an intrinsic limitation
  - Extrinsic limitations
- What is the data telling us: thumbs up or down?
- Other successful descriptions of system properties
  - Magnetic anisotropy
  - Temperature dependence of transport in metallic samples
  - Magnetization dynamics
  - Domain wall dynamics and resistances
  - Anisotropic magnetoresistance
  - TAMR
  - Anomalous Hall effect
- Remaining challenges:
  - Red shift in IR absorption peak

Department of Physics, Texas A&M University



Intrinsic properties of (Ga,Mn)As:  $T_c$  linear in  $Mn_{Ga}$  local moment concentration; falls rapidly with decreasing hole density in more than 50% compensated samples; nearly independent of hole density for compensation < 50%.

## **Extrinsic effects: Interstitial Mn - a magnetism killer**

#### **Interstitial Mn is detrimental to magnetic order:**

- compensating double-donor reduces carrier density
- couples antiferromagnetically to substitutional Mn even in low compensation samples

Blinowski PRB '03, Mašek, Máca PRB '03



Yu et al., PRB '02:

~10-20% of total Mn concentration is incorporated as interstitials

Increased T<sub>c</sub> on annealing corresponds to removal of these defects.

# Mn<sub>Ga</sub> and Mn<sub>I</sub> partial concentrations



## Microscopic defect formation energy calculations:

No signs of saturation in the dependence of  $\mathrm{Mn}_{\mathrm{Ga}}$  concentration on total  $\mathrm{Mn}$  doping

#### **Experimental hole densities: measured by ordinary Hall effect**

#### Open symbols & half closed as grown. Closed symbols annealed



Annealing can very significantly increases hole densities.

#### **Experimental partial concentrations of MnGa and MnI in as grown samples**

Theoretical linear dependence of Mn<sub>sub</sub> on total Mn confirmed experimentally

Obtain Mn<sub>sub</sub> & Mn<sub>Int</sub> assuming change in hole density due to Mn out diffusion



Jungwirth, Wang, et al. Phys. Rev. B 72, 165204 (2005)

Total concentration of Mn SIMS: measures total Mn concentration. Interstitials only compensation assumed

# OUTLINE

- DMS: intro to the phenomenology
  - Possible stumbling blocks to high Tc
  - Theoretical approaches to DMSs
- What is theory telling us about Tc trends
  - Is there an intrinsic limitation
  - Extrinsic limitations
- What is the data telling us: thumbs up or down?
- Other successful descriptions of system properties
  - Magnetic anisotropy
  - Temperature dependence of transport in metallic samples
  - Magnetization dynamics
  - Domain wall dynamics and resistances
  - Anisotropic magnetoresistance
  - TAMR
  - Anomalous Hall effect
- Remaining challenges:
  - Red shift in IR absorption peak

Department of Physics, Texas A&M University

# Tc as grown and annealed samples





#### **Linear increase of Tc with effective Mn**

Effective Moment density,  $Mn_{eff} = Mn_{sub}-Mn_{Int}$  due to AF  $Mn_{sub}-Mn_{Int}$  pairs. Tc increases with  $Mn_{eff}$  when compensation is less than ~40%.

No saturation of Tc at high Mn concentrations





# **Prospects of high Tc in DMSs**

- Concentration of uncompensated Mn<sub>Ga</sub> moments has to reach ~10%. Only 6.2% in the current record Tc=173K sample
- Charge compensation not so important unless > 40%
- No indication from theory or experiment that the problem is other than technological - better control of growth-T, stoichiometry
- New growth or chemical composition strategies to incorporate more MnGa local moments or enhance p-d coupling
- Window in this difficult phase space is narrow and obtaining the optimal strength of the coupling and technical difficulties for GaMnAs may make it impossible to reach room Tc
- May want to look into materials close to this material but higher coupling strength to find the optimal system



Robustness of ferromagnetism



# OUTLINE

- DMS: intro to the phenomenology
  - Possible stumbling blocks to high Tc
  - Theoretical approaches to DMSs
- What is theory telling us about Tc trends
  - Is there an intrinsic limitation
  - Extrinsic limitations
- What is the data telling us: thumbs up or down?
- Other successful descriptions of system properties
  - Magnetic anisotropy
  - Temperature dependence of transport in metallic samples
  - Magnetization dynamics
  - Anisotropic magnetoresistance
  - TAMR
  - Anomalous Hall effect
  - Domain wall dynamics and resistances
- Remaining challenges:
  - Red shift in IR absorption peak

Department of Physics, Texas A&M University

# **MAGNETIC ANISOTROPY**



experiment:





# **Condensation energy depends on magnetization orientation**

M. Abolfath, T. Jungwirth, J. Brum, A.H. MacDonald, Phys. Rev. B 63, 035305 (2001)





#### Resistivity temperature dependence of metallic GaMnAs



1.00 ••••• p=0.2 nm<sup>-3</sup> 0.95 ρ/ρ 98.0 Para 98.0 Para p=0.6 nm<sup>-3</sup> x=0.05 J=60 meV nm<sup>3</sup> 0.75 0 20 40 60 80 100 120 140 Temperature (K)

Potashnik et al 2001

**Lopez-Sanchez and Bery 2003 Hwang and Das Sarma 2005** 

# Ferromagnetic resonance: Gilbert damping

$$\alpha = \frac{J_{pd}h_{eff}}{4\hbar} \int \frac{d^3k}{(2\pi)^3} \sum_{a,b} |\langle \phi_a(\mathbf{k})|s^+|\phi_b(\mathbf{k})\rangle|^2$$
$$\times A_{a,\mathbf{k}}(\epsilon_F) A_{b,\mathbf{k}}(\epsilon_F).$$

$$A_{a,\mathbf{k}}(\omega) = \Gamma / [(\epsilon - \epsilon_{a,\mathbf{k}})^2 + \Gamma^2/4].$$



$$\Delta H_{pp}(\omega) = \Delta H_{pp}(0) + \frac{2}{\sqrt{3}} \frac{\omega}{g\mu_B} \alpha.$$





# **Anisotropic Magnetoresistance**





T. Jungwirth, M. Abolfath, J. Sinova, J. Kucera, A.H. MacDonald, Appl. Phys. Lett. 2002

# **Tunneling anisotropic magnetoresistance (TAMR)**



Gould, Ruster, Jungwirth, et al., PRL '04





Bistable memory device with a single magnetic layer only

#### **Giant magneto-resistance**



## ANOMALOUS HALL EFFECT

## AHE without disorder



T. Jungwirth, Q. Niu, A.H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002)

## anomalous velocity:

$$\dot{x}_c = \frac{\partial \epsilon}{\hbar \partial \vec{k}} + (e/\hbar) \vec{E} \times \vec{\Omega}.$$

### **Berry curvature:**

$$\Omega_z = 2 \operatorname{Im} \left[ \left\langle \frac{\partial u}{\partial k_y} \middle| \frac{\partial u}{\partial k_x} \right\rangle \right].$$

$$\sigma_{AH} = -\frac{e^2}{\hbar} \sum_n \int \frac{d\vec{k}}{(2\pi)^3} f_{n,\vec{k}} \Omega_z(n,\vec{k}) \; , \label{eq:sigmaAH}$$



# **ANOMALOUS HALL EFFECT IN GaMnAs**



# OUTLINE

- DMS: intro to the phenomenology
  - Possible stumbling blocks to high Tc
  - Theoretical approaches to DMSs
- What is theory telling us about Tc trends
  - Is there an intrinsic limitation
  - Extrinsic limitations
- What is the data telling us: thumbs up or down?
- Other successful descriptions of system properties
  - Magnetic anisotropy
  - Temperature dependence of transport in metallic samples
  - Magnetization dynamics
  - Anisotropic magnetoresistance
  - TAMR
  - Anomalous Hall effect
  - Domain wall dynamics and resistances
- Remaining challenges:
  - Red shift in IR absorption peak
  - Seemingly large effective masses

Department of Physics, Texas A&M University

# The valence band picture of IR absorption

$$F = \int d\omega Re[\sigma(\omega)] = \pi e^2 p / 2m_{opt}$$

hole density:  $p=0.2, 0.3, ...., 0.8 \text{ nm}^{-3}$ 



x = 5%

 $m_{opt}$  independent of (within 10%):

- density
- · disorder
- · magnetic state

GaAs  $m_{op} \approx 0.24$   $m_{o}$ 

J. Sinova, et al. Phys. Rev. B 66, 041202 (2002).

Exps: Singley et al Phys. Rev. Lett. 89, 097203 (2002) Hirakawa, et al Phys. Rev. B 65, 193312 (2002)

infrared absorption →accurate density measurement

## FINITE SIZE EXACT DIAGONALIZATION STUDIES









p=0.2 nm<sup>-3</sup>, x=4.0%, compensation from anti-sites

f-sum rule accurate within 10 %

S.-R. E. Yang, J. Sinova, T. Jungwirth, Y.P. Shim, and A.H. MacDonald, PRB 67, 045205 (03)

# Possible issues regarding IR absorption

- Energy dependence of Jpd
- Localization effects
- Contributions due to impurity states: Flatte's approach of starting from isolated impurities
- Systematic p and  $x_{\text{eff}}$  study (need more than 2  $m_{\text{eff}}$  data points)

# **Keeping Score**

The effective Hamiltonian (MF) and weak scattering theory (no free parameters) describe (III,Mn)V shallow acceptor metallic DMSs very well in the regime that is valid:

- Ferromagnetic transition temperatures √
- Magneto-crystalline anisotropy and coercively √
- Domain structure √
- Anisotropic magneto-resistance √
- Anomalous Hall effect
- MO in the visible range √
- Non-Drude peak in longitudinal ac-conductivity √
- Ferromagnetic resonance √
- Domain wall resistance √
- TAMR √

BUT it is only a peace of the theoretical mosaic with many remaining challenges!!

TB+CPA and LDA+U/SIC-LSDA calculations describe well chemical trends, impurity formation energies, lattice constant variations upon doping

#### Theory of ferromagnetic (III,Mn) V semiconductors, Jungwirth, Sinova, Masek, Kucera, and MacDonald, to appear in Rev. of Mod. Phys., in cond-mat/0603380

http://unix12.fzu.cz/ms



