Threshold Current of Domain Wall Motion based on rigid wall description

Tokyo Metropolitan Univ. 首都大学東京都市教養学部

> 多々良源 Tatara, Gen

H. Kohno (Osaka Univ.) J. Shibata (RIKEN) J. Ferre, N. Vernier (Univ. Paris) T. Takayama (TMU) Y. Nakatani (Univ. Elec. Comm.) H. Fukuyama (IFCAM)

 θ : angle in easy (*xz*) plane ϕ : angle from easy plane

•Lagrangian

$$L = \sum_{x} \left(-\hbar S \dot{\phi} (1 - \cos \theta) - H_{S} - \Delta \vec{S} \cdot \vec{\sigma} + L_{e} \right)$$
Spin Hamiltonian
$$H_{S} = \sum_{x} \frac{1}{2} \left(J (\nabla S)^{2} - KS_{z}^{2} + K_{\perp}S_{y}^{2} \right) \quad \text{Out of plane Energy (dynamics)}$$
Electron part
$$H_{e} = \sum_{k\sigma} \varepsilon_{k} c_{k\sigma}^{+} c_{k\sigma}$$
Rigidness of DW
$$H_{ex} = \Delta \int dz \vec{S}(z) \cdot \vec{\sigma} L$$

$$K_{\perp}$$
: Hard axis anisotropy

Simple equation But describes fairly well (compared with simulation) Deformation is high-energy mode

Experiment GaMnAs

(Magnetic semiconductor)

Yamanouchi, Chiba, Matsukura, Dietl & Ohno, PRL (2006)

Low current operation *v*=20m/s

Experiment GaMnAs

Yamanouchi, Chiba, Matsukura, Dietl & Ohno, PRL (2006)

Experiment GaMnAs

(Magnetic semiconductor)

Yamanouchi, Chiba, Matsukura, Dietl & Ohno, PRL (2006)

Threshold, velocity:

Consistent with Intrinsic pinning

Thermal effect?

$$\ln v \approx -(T-T_c)^2 j^{-1/2}$$

• Thermally activated motion by spin torque below threshold Tatara, Vernier & Ferre, Appl. Phys. Lett. (2005)

• Thermally activated motion by spin torque below threshold Tatara, Vernier & Ferre, Appl. Phys. Lett. (2005)

Pinned wallPotential for \$\ophi\$

$$V_{\phi} = \frac{NS^2 K_{\perp}}{2} \sin^2 \phi + \frac{\hbar}{e} I_s$$

Universal dependence on spin current I_s

 \cdot velocity of ϕ

$$\left\langle \dot{\phi} \right\rangle \propto e^{-NS^2 K_{\perp}/(2k_B T)} \sinh \frac{\pi \hbar I_s}{2ek_B T}$$

$$v \equiv \left\langle \dot{X} \right\rangle = -\frac{\lambda}{\alpha} \left\langle \dot{\phi} \right\rangle$$

$$\ln v \approx \ln \sinh \frac{\pi \hbar I_s}{2ek_B T} \approx \frac{\pi \hbar I_s}{2ek_B T}$$

Experiment

GaMnAs

Magnetic semiconductor^{Yamanouchi}, Chiba, Matsukura, Dietl & Ohno, PRL (2006)

Threshold, velocity:

Consistent with Intrinsic pinning Thermal effect $\ln v \approx j/T$

Rigid wall theory Tatara, Vernier & Ferre

$$\ln v \approx -(T - T_c)^2 j^{-1/2}$$

Randomness and creep? (Nakatani)

Behavior of threshold (metals)

$$j_c = \frac{eS^2}{a^3\hbar P} K_\perp \lambda$$
 tko4

Parkin

Threshold : Not affected by extrinsic pinning intrinsic pinning ...? But jc may be too low

Correction terms ansfer Force Non-adiabaticity, β-term ai Spin (reflection relaxation $\dot{X} - \alpha \lambda \dot{\phi} = \frac{\hbar S}{2} K_{\perp} \lambda \sin 2\phi + \frac{1}{2S} \frac{a^3}{a} P j$ $\dot{\phi} + \alpha \frac{\dot{X}}{\lambda} = (\gamma R_w + \beta_0) j - \frac{1}{2} \Omega^2 X \theta(\lambda - |X|)$ R_{w} : resistance b β_0 : Electron spin X Ω : pinning frequ Intrinsic threshold disappears Even if β is small S

 j_c determined by Extrinsic pinning

Correction terms
Non-adiabaticity,
$$\beta$$
-term a

$$\dot{X} - \alpha \lambda \dot{\phi} = \frac{\hbar S}{2} K_{\perp} \lambda \sin 2\phi + \frac{1}{2S} \frac{a^{\vee}}{e} P j$$

$$\dot{\phi} + \alpha \frac{\dot{x}}{\lambda} = \left(\gamma R_w + \beta_0\right) j - \frac{1}{2} \Omega^2 X \theta(\lambda - |X|)$$

$$\dot{S} = B \times S + \frac{1}{S} \alpha S \times \dot{S} - \frac{1}{2eS} (j_s \cdot \nabla) S - \frac{1}{eS} \beta_0 S \times (j \cdot \nabla) S$$
Landau-Lifshitz-Gilbert eq.
Origin of β
 R_w : resistance by DW Saitoh et al '04
 β_0 : Electron spin relaxation
Zhang & Li '04, Thiaville et al '04, Tserkovnyak et al '05
Kohno GT Shibata '06
Modification of damping by current
Barnes & Maekawa '05, Tserkovnyak et al $\beta_0 = \alpha$
Stilles, MacDonald...
Different model -> different results Still controversial

20 Various behavior of J_c Summary 15 (s/u) 10 Experiments ۲ eff semiconductors 100 K Yamanouchi, Ohno 10 12 x 10[°] 8 •Intrinsic pinning appears roughly O.K. j (A/cm²) Thermal activation collective creep under random pinning, deformation metals Origin of threshold still controversial Theory Role of spin relaxation, single band or s-d?,... •3 controllable parameters Lower J.! K_{\perp} . V_{0} , β

DW speed

Under extrinsic pinning (fixed)

•Threshold j_c is extrinsic •Discontinuity at j_c (T=0)

Below threshold

•Non-adiabaticity, β -term and extrinsic pinning

Experiments on metals

•Non-adiabaticity, β -term and extrinsic pinning

Extrinsic pinning	I-a	$j_{ m c} \propto \sqrt{K_{\perp}V_0}$	Geometry and Pinning
-	I-b	$j_{ m c} \propto V_0/eta'$	eta^\prime and Pinning
Intrinsic e pinning	II	$j_{ m c} \propto K_{\perp}$	Geometry
Extrinsic pinning	III	$j_{ m c} \propto V_0/lpha$	Pinning

To lower threshold

•Sample quality (extrinsic pinning V_0)

•Spin-orbit (β) : heavy impurities

•Sample geometry (intrinsic pinning K_{\perp})

Manipulation by AC current Spin transfer or Momentum transfer? - driving mechanism

•E. Saitoh, Miyajima, Yamaoka & Tatara, Nature 432, 203 (2004)

- •DW motion by use of resonance
 - Momentum transfer dominates
 - Determination of DW character

m=6.6 ×10⁻²³ kg τ =10⁻⁸ s (α =0.01) R_w=10⁻⁴ Ω

•Low-current operation $j \approx 10^{10} [A/m^2] \Delta X \approx 10 \mu m$ Resonance "Domain wall electronics" Nature, News and Views

20MHzでの動作

・磁壁の電流による制御(ここまでの結果)

