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Spin transfer

Spin-polarized electrons impinging on a ferromagnet transfer
spin angular momentum inducing a spin torque on the
magnetization
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Spin torque can have dramatic consequences for magnetic dynamics
in nanostructures, leading to various instabilities which contain
reach physics and are promising for useful applications

Slonczewski, ][MMM 159, L1 (1996); Berger, PRB 54,9353 (1996)




Current-driven bulk dynamics

Mean-field s-d picture:

Spins drifting through a large position-dependent exchange field
nearly adiabatically follow local magnetization direction, exerting a
torque on the magnetic moment

Inhomogeneous magnetization thus leads to a coupling between
spin and orbital degrees of freedom

Equation of motion for the spin density:
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Domain-wall motion
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Yamaguchi et al., PRL 92, 077205 (2004) Current density (10'* A/m?)

Also:

S.S.P.Parkin et al.: Transition-metal race-track memory
H. Ohno et al.: Domain walls in GaMnAs wires




Theories

Theory of Current-Driven Domain Wall Motion: Spin Transfer versus Momentum Transfer

Current-Spin Coupling for Ferromagnetic Domain Walls in Fine Wires
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In general there are spin-transfer and No intrinsic oinnine!
momentum-transfer terms in the O Intrinsic pinning:

equation of motion

PRL 95, 107204 (2005)

Pinning comes from
an extrinsic potential
8

L. Berger, JAP 55, 1954 (1984); JAP 71,2721 (1992)

Only the former contributes to the
motion of smooth domain walls, while

the later is proportional to the wall
resistance ., ;
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FIG. 1. Time-averaged wall velocity as a function of spin vV = pC ( _] - ] k)

current, jg, in the weak pinning case (Vy, < K| /a).




Theories (cont.)

Roles of Nonequilibrium Conduction Electrons on the Current-Induced Magnetization Dynamics in Disordered Itinerant Ferromagnets
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PRL 93,027204 (2004) cont-mat/0512715

Treat magnetization dynamics and
electron transport self-consistently
(time-dependent SDFT)

Presence of spin-orbit scattering
is required for current-driven
domain-wall motion

Include disorder and spin-orbit
scattering at the level of kinetic
equation, using Keldysh formalism
for spin dynamics in the presence

Critical current then vanishes in
the absence of pinning disorder
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of motion that can be applied to a
variety of problems




Current-driven spin-wave instabilities
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Bazaliy, Jones, and Zhang, PRB 57,R3213 (1998); Fernandez-Rossier, Braun, Nunez, and MacDonald, PRB 69, 174412 (2004)




Beyond instability?

Effect of Spin Current on Uniform Ferromagnetism: Domain Nucleation
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Hiroshi Kohno Electric currents in a ferromagnet film produce adiabatic and nonadiabatic torques on magnetization.

Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan th?n the current density is sgfﬁcier.ltly large, the.se tf)rques drive_the uniform magnetizat%or'l into
(Received 6 July 2004; revised manuscript received 11 November 2004; published 24 February 2005) spatially and temporally chaotic motion of magnetization. We predict several key characteristics of
) ) ) ] ) . ; the magnetization instability by calculating the current-induced domain wall creation, annihilation
A large spin current .a[.)phed to a uniform ft.zrromagr%et lea.d.s tq a spin-wave 1nstab111ty.a§ pointed oyt and dynamics. © 2005 American Institute of Physics. [DOI: 10.1063/1.1849591]
recently. In this Letter, it is shown that such spin-wave instability is absent in a state containing a domain
wall, which indicates that nucleation of magnetic domains occurs above a certain critical spin current. J AP 97. 10C703 (200 5)
This scenario is supported also by an explicit energy comparison of the two states under spin current. ’
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FIG. 3. Time evolution of the spatially averaged magnetization component

FIG. 1.

Schematic phase diagram under spin current j in the

absence of pinning potential. (a) K; < K. Above j§', uniform
ferromagnetism collapses into multidomain structure in which
domain walls are flowing due to spin current. The threshold,
joePin for “depinning” from K| is below jT. (b) K| > 8K.
Energy of the single-wall state (Eg,,) is compared with that of the
uniformly magnetized state, E,,; = 0. Multidomain state here
remains at rest. In the gray region, (j; > j*P™), the domain wall
starts to flow but is unstable, suggesting a new ground state.

along the easy axis (M )/ M. Inset: time evolution of the magnetization of a
single mesh in the sample. CS indicates the chaotic states. The parameters
are H,,=10° Oe, b;=2.5X10° m/s, £&=0.0025 and a=0.02.




Basic theoretical questions

e Critical current? Extrinsic or intrinsic?

* Domain-wall velocity

e Domain-wall deformation

e Current-driven instabilities? Chaotic behavior?

Existence of a multidomain “ground state™?

* Basic questions concerning magnetization dynamics in
real ferromagnets. Gilbert damping!?




Applying circuit-theory ideas

Consider first spin-wave dispersionin
multilayer superlattices. Normal interlayers
mediate equilibrium supercurrents and

nonequilibrium spin pumping
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persistent spin currents
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Stoner model

In 2 mean-field view of itinerant ferromagnetism, there is
only one species of electrons experiencing an exchange
field that has to be determined self-consistently

ViHx|p|(r,t) ~ Axcm(r, t)

A

H = [Ho + Ul(r,?) + VI[pl(r,?)] 1
+hé - (H+ Hy [p]) (r,t) + H,

Adiabatic Local Spin-Density Approximation
(the “bare” model of itinerant ferromagnetism)
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Bulk dynamics: Keldysh+LDA

Equation of motion for the spin density:
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This leads to Gilbert damping: «a(q) = + AR q°
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Compare to DFT/Fermi-liquid result in clean limit: L 5
T F

Mineev, PRB 72, 144418 (2005); Qian and Vignale, PRL 88, 056404 (2002); Halperin and Hohenberg, PR 188, 898 (1969)
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Kinetic equation
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Note, however, that Xiao, Zangwill, and Stiles [PRB 73, 054428 (2006)]
criticized a phenomenological introduction of 7, arguing that there
should be no spin dephasing towards a local equilibrium distribution

Skadsem et al. have recently verified this result for spin-orbit and
magnetic disorder in the self-consistent Born approximation
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Magnetic equation of motion
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arpa = 0 Qs—qg = NP
The key parameter is the normalized spin-dephasing rate 3 =1/(7,A)
The first current-driven term (which is analogous to the Reg'* torque

in spin valves) leads to spin-wave instability of a uniform magnetization
when the current-induced “Doppler shift” equals the natural frequency

The 3 term (analogous to the Img'! torque in spin valves), however,
restores uniform magnetization stability in itinerant ferromagnets!
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Domain-wall motion

H=(Km,+ H)z - K, m;x+ AV’m

Current-driven Neel wall:
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interplay of magnetic o v
anisotropies and stiffness: W = /A/K

69 t
Walker’s ansatz: e=¢(t), In tani = c(t)(x - J U(T)d7'>

Li and Zhang, PRB 70, 024417 (2005) 0

Effectively perfect spin conversion
into domain-wall motion despite
vy = —(8/a)Pj microscopic spin dephasing!
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the new dynamic term:

15



Concluding remarks

Current-driven magnetization dynamics in
“bulk” needs more attention, theoretically and
especially experimentally

We pointed out important qualitative differences between
mean-field s-d and self-consistent Stoner models

It is crucial to understand the origin of ferromagnetic
damping and its role in current-driven dynamics. Can it be
described microscopically in terms of single-electron
dephasing due to spin-orbit and/or magnetic disorder?

What is the correct description of magnetism in
transition metals! Current-driven dynamics appears to be
a useful tool to address this question
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