First-Principles Studies of Zinc Oxide

Chris G. Van de Walle Materials Department, UCSB

KITP Spintronics Program April 18, 2006

Acknowledgments

Collaborations

A. Janotti (UCSB)

- J. Neugebauer (MPI Düsseldorf)
- C. Stampfl (U. Sydney)
- S. Limpijumnong (Suranaree U. Technology, Thailand)
- O. Schmidt, P. Kiesel, N. Johnson (PARC)
- A. Kohan, G. Ceder (MIT)
- J. Pollmann, D. Vogel (Münster)
- J. Weber, E. Lavrov (Dresden), R. Helbig (Erlangen)

Discussions

J. McCaldin (Caltech), W. E. Carlos (NRL), D. C. Look (Wright State); C. Litton (AFRL); M.McCluskey (Washington State U.)

• Support

- AFOSR
- PARC

Alexander von Humboldt Foundation

Applications of zinc oxide

Electronics

- Varistors (surge protectors)
- Transducers
- Radiation hardness
- Host for magnetic impurities

Chemistry

- Catalysis
- Sensors

ZnO crystals Bulk substrates Wet etching

Huang et al., Science 292, 1897 (2001)

Optoelectronics

- Direct band gap: 3.4 eV!
- Photodetectors
- LEDs, lasers

Nanostructures

- Nanocrystals
- Nanowires

ZnO for optoelectronics

• Large excitonic binding energy

- ZnO: 60 meV; GaN; 25 meV
- Efficient excitonic emission at RT

Optically pumped lasing

- Platelets [Reynolds et al., Solid State Commun. 99, 873 (1996)]
- Thin films [Bagnall et al., Appl. Phys. Lett. 70, 2230 (1997)]

Prospects for injection lasers/ LEDs:

- Heterojunctions with MgZnO, CdZnO
- Require controlled doping!

Motivation and Outline

- Devices: Control of conductivity required!
- Zinc oxide: typically *n*-type
 - Cause: heavily debated
 - Traditionally attributed to oxygen vacancies
- Investigations:
 - Cause of *n*-type doping
 - Role of native point defects
 - Prospects for *p*-type doping
- First-principles calculations
 - Density functional theory, pseudopotentials
 - Comprehensive theoretical framework

Formalism

• E_{form}: formation energy

Concentration of defects or impurities:

 $C = N_{sites} \exp \left[-E_{form}/kT\right]$

• Example: oxygen vacancy in ZnO

 $E_{form}(V_O^{2+}) = E_{tot}(V_O^{2+}) - E_{tot}(bulk) + \mu_O + 2 E_F$ μ_O : energy of oxygen in reservoir, i.e., oxygen chemical potential E_F : energy of electron in its reservoir, i.e., the Fermi level

• First-principles calculations:

- Density-functional theory (DFT), local density approximation (LDA)
- Supercell geometry (96 atoms); pseudopotentials; plane waves Review: Van de Walle & Neugebauer, J. Appl. Phys. 95, 3851 (2004).
- Previous calculations:
 Kohan *et al.* PRB **61**, 15019 (2000)
 Oba *et al.* JAP **90**, 824 (2001)

Zhang *et al.* PRB **63**, 75205 (2001) Lee *et al.* PRB **64**, 85120 (2001)

• Need to correct for DFT-LDA deficiencies

UCSB

Role of Zn d states

- Semicore d states play important role
 - 3d states ~8 eV below the valence-band maximum (VBM)
 - p-d interaction
 - » VBM: anion *p* states
 - » *p-d* repulsion pushes the VBM up
 - Affects
 - » band lineups
 - » deformation potentials
 - » defect levels
 - » exchange coupling

UCSR

- Problem: DFT-LDA underestimates the binding energy of the semicore d states
 - \rightarrow **Over**estimates *p*-*d* couping
 - \rightarrow Band gap too small / Band offsets wrong
 - \rightarrow Deformation potential for VBM too small

Our approach: LDA+*U*

Orbital-dependent correction to LDA potential

- Anisimov et al., PRB 48, 16929 (1993)
- Liechtenstein et al., PRB 52, 5667 (1995)
- Applied to filled *d* shell

Energy

- U determined from first principles
 - Atomic calculations
 - Screening in solid
- Application to ZnO
 - LDA → LDA+U to correct transition levels
 - » Lany and Zunger (2005)
 - Use to extrapolate to experimental gap

Native point defects in ZnO

- V_O, V_{Zn} dominate
- V_{Zn}: deep acceptor
- V_o: deep donor
 - does *not* cause
 unintentional *n*-type
 doping

A. Janotti and C. G. Van de Walle, Appl. Phys. Lett. **87**, 122102 (2005).

Oxygen vacancies

Large relaxations of nearest-neighbors Zn atoms dependent on charge state

Vo: Comparison with experiment

Vlasenko & Watkins, Phys. Rev. B 71, 125210 (2005).

Hydrogen ???

• In Si, Ge, GaAs, AIAs, AIN, ZnSe, ...: Hydrogen amphoteric

- H⁺ favorable in *p*-type
- H⁻ favorable in *n*-type
- always counteracts prevailing conductivity

Hydrogen in ZnO

H⁺ is the only stable charge state

C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

Acknowledgement: J. McCaldin

Experiment

Muon spin rotation

- Muonium: pseudo-isotope of hydrogen
 - » Cox et al., Phys. Rev. Lett. 86, 2601 (2001)

Electron paramagnetic resonance + ENDOR

» Hofmann et al., Phys. Rev. Lett. 88, 045504 (2002)

• Effusion

- Pronounced peak in effusion spectra
 - » Nickel and Brendel, PRB 68, 193303 (2003)

• Vibrational spectroscopy

 Microscopic identification of defects and complexes through calculation of local vibrational modes

• Hydrogen as an unintentional dopant:

- vapor-phase transport, hydrothermal growth
- MOCVD (sources, carrier gas), MBE (residual gas)
- laser ablation, sputtering (H₂ atmosphere)
- forming gas anneal

Universal alignment of hydrogen levels

C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003)

Transparent conductors

- Transparency + (almost) metallic conductivity
- Applications:
 - » Active matrix displays
 - » Solar cells
 - » VCSELS
- Cause of conductivity?
- See also
 C. Kilic and A. Zunger,
 Appl. Phys. Lett. 81, 73 (2002)

C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003)

Conclusions

- Sources of conductivity
 - role of native defects
 - » Oxygen vacancies
 - hydrogen

Defect and impurity engineering

12.0 10.0 ⁻ormation energy (eV) 8.0 O (oct) 6.0 split 4.0 2.0-Zn 0.0 -2.0 0.0 1.0 2.0 3.0 Fermi level (eV)

- from understanding to control
 - » suppressing native defects
 - » controlling incorporation of hydrogen in ZnO
 - suppressing *n*-type conductivity
 - co-doping with hydrogen to promote p-type conductivity
- Role of anion vacancies in other oxides
- Role of hydrogen in other oxides

