

Inverse spin Hall effect as a means to study non-linear spin fluctuation

YoshiChika Otani^{1, 5}

Y. Niimi^{1,5} D. H. Wei¹, B. Gu^{2,3}, T. Ziman⁴, S. Maekawa^{2,3}

¹ISSP, Univ. of Tokyo, Japan
²ASRC, JAEA, Japan
³CREST, JST, Japan
⁴ILL-CNRS, France
⁵RIKEN-CEMS, Japan

Applications of spin Hall effect (SHE)

The other application of SHE has not been demonstrated yet.
 Detection of non-linear spin fluctuation via ISHE

Outline

Introduction

- spin Hall effect (SHE) and anomalous Hall effect (AHE)
- AHE of pure Ni and Fe
- Kondo's model for AHE

SHE in NiPd alloys

- experimental setup (spin absorption technique)
- anomaly near Curie temperature T_C

Comparison with theory

extended Kondo's model

Summary

Direct & Inverse Spin Hall effect

Spin-orbit interaction

Direct spin Hall effect (DSHE)

Inverse spin Hall effect (ISHE)

Un-polarized charge current \Leftrightarrow Transverse spin current

Y. K. Kato *et al.* Science **306**, 1910 (2004).

J. Wunderlich et al. Phys. Rev. Lett. 94, 047204 (2005)

Anomalous Hall effect (AHE)

AHE of pure Ni & Fe

intrinsic AHE for pure ferromagnetic metals

J. P. Jan, Helv. Phys. Acta 25, 677 (1952).J. M. Lavine, Phys. Rev. 123, 1273 (1961).

J. P. Jan, Helv. Phys. Acta 25, 677 (1952).

To explain the peak in ρ_{xy} below T_{C} ...

Karplus & Luttinger's theory

 $oldsymbol{
ho}_{xy} \propto oldsymbol{
ho}_{xx}^2 \left< oldsymbol{m} \right>$

R. Karplus & J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

Kondo's theory

$$\boldsymbol{\rho}_{xy} \propto \left\langle \left(\boldsymbol{m} - \left\langle \boldsymbol{m} \right\rangle \right)^3 \right\rangle$$

J. Kondo, Prog. Theor. Phys. 27, 772 (1962).

Interaction between conduction electron and localized moment

Kondo's work for ISHE?

Outline

Introduction

- spin Hall effect (SHE) and anomalous Hall effect (AHE)
- AHE of pure Ni and Fe
- Kondo's model for AHE

SHE in NiPd alloys

- experimental setup (spin absorption technique)
- anomaly near Curie temperature T_C

Comparison with theory

extended Kondo's model

Summary

Non-local spin injection

Electrical detection of non-local spin signal

Spin absorption method

Spin absorption technique & ISHE

Y. Niimi et al., Phys. Rev. Lett. 106, 126601 (2011).

Spin current $I_{\rm S}$ into NiPd can be experimentally determined by measuring NLSV.

ISHE for Ni_xPd_{1-x} alloys

Ni_xPd_{1-x}: weakly ferromagnetic alloy

size: *w* = 100 nm, *t* = 20 nm

Spin absorption into NiPd alloy

Spin Hall resistivity as a function of ρ_{imp}

14

Spin Hall resistivity of NiPd as a function of ρ_{imp}

$$\rho_{\rm SHE} = \rho_{\rm SHE}{}^{\rm in} + \alpha_{\rm H}{}^{\rm ex} \cdot (\rho_{\rm NiPd} - \rho_{\rm Pd})$$

$$\alpha_{\rm H}^{\rm in} \equiv \rho_{\rm SHE}^{\rm in} / \rho_{\rm Pd} \sim 0.6\%$$

M. Morota, Y. N. *et al.*, PRB **83**, 174405 (2011).

Temperature dependence of SH angle

AHE for Ni_xPd_{1-x} alloys

200

0

Hc (Oe)

ISHE of NiPd near T_C

Nat. Commun. **3**, 1038 (2012).

3D plot of R_{ISHE} near T_C

For the anomalous behavior near $T_{\rm C}$ is quite reproducible!

ISHE of NiPd near T_C

 $\mathrm{Ni}_{0.08}\mathrm{Pd}_{0.92}$

Nat. Commun. **3**, 1038 (2012).

Anomalous part of R_{ISHE} near T_C

$\delta \Delta R_{ISHE}$ as a function of reduced temperature

The anomalous part is almost independent of the Ni concentration.

Anomalies near T_c

Outline

Introduction

- spin Hall effect (SHE) and anomalous Hall effect (AHE)
- AHE of pure Ni and Fe
- Kondo's model for AHE

SHE in NiPd alloys

- experimental setup (spin absorption technique)
- anomaly near Curie temperature T_C

Comparison with theory

extended Kondo's model

Summary

To explain the anomaly in ρ_{xx} near T_{C} ...

$$ho_{xx} \propto \langle (m_i - \langle m_i \rangle) (m_j - \langle m_j \rangle)
angle \propto \chi_0^{\text{loc}}$$

contributions come only when *i* and *j* are within a certain cutoff distance.

To explain the anomaly in ρ_{xy} below T_{C} ...

Karplus & Luttinger's theory

R. Karplus & J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

$$ho_{xy} \propto
ho_{xx}^{2} \langle {
m m}
angle$$

Kondo's theory

J. Kondo, Prog. Theor. Phys. 27, 772 (1962).

$$ho_{xy} \propto \langle (m - \langle m
angle)^3
angle$$

second Born approximation!!

To explain the anomaly in R_{ISHE} near T_{C} ...

The Kondo's theory has to be extended for the ISHE configuration.

Kondo's theory

To obtain the transition probability from k to k'

SO(1): $\langle H_{ex}H_{SO}^{(1)}H_{ex}\rangle \sim \langle S_n^3 \rangle \langle S_c^2 \rangle \equiv r_1 \langle S_c^2 \rangle \longrightarrow r_1$: third-order spin correlation SO(2): $\langle H_{ex}H_{SO}^{(2)}H_{ex}\rangle \sim \langle S_n^4 \rangle \langle S_c^3 \rangle \equiv r_2 \langle S_c^3 \rangle \longrightarrow r_2$: fourth-order spin correlation

** $H_{SO}^{(1)}$ and $H_{SO}^{(2)}$ appear in the s-d Hamiltonian to the same order with respect to the SO coupling constant λ of the localized moment.

AHE vs ISHE

Temperature dependence of r_1 and r_2

Anomalous part of R_{ISHE} near T_C

• The anomaly in ρ_{xx} near $T_{\rm C}$ can be explained by r_2 except for just on $T_{\rm C}$.

Comparison to uniform non-linear susceptibilities

$$\boldsymbol{M}_{tot} = \boldsymbol{M}_{tot,0}\left(\boldsymbol{T}\right) + \boldsymbol{\chi}_{0}^{uni}\boldsymbol{H} + \boldsymbol{\chi}_{1}^{uni}\boldsymbol{H}^{2} + \boldsymbol{\chi}_{2}^{uni}\boldsymbol{H}^{3} + \cdots,$$

 $\chi_1^{uni} = \beta^2 \left\langle \left(M_{tot} - \left\langle M_{tot} \right\rangle \right)^3 \right\rangle$ 1st order nonlinear susceptibility

$$\delta \Delta R_{ISHE} \propto r_2 \propto \chi_2^{uni} \approx \beta^3 \left\langle \left(M_{tot} - \left\langle M_{tot} \right\rangle \right)^4 \right\rangle$$
 2nd order nonlinear susceptibility

Summary

- We have studied inverse spin Hall effects (ISHE) of weakly ferromagnetic Ni_xPd_{1-x} alloys ($x = 0.07 \sim 0.09$). Anomalies in R_{ISHE} near T_{C} were clearly observed for each Ni concentration. The shape of the anomaly is asymmetric with respect to T_{C} and does not depend on x.
- The experimentally observed anomaly can be well-explained with the generalized version of the Kondo's theory, which was originally developed to explain the anomaly in anomalous Hall effect (AHE) in pure Ni and Fe.
- The higher-order spin fluctuations (i.e., r₁ and r₂ terms) introduced in the generalized Kondo's theory give an essential difference between SHE and AHE.