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nanometres, electron tunnelling could convey spin angular
momentum; in the present macroscopic-sized system, in contrast,
the tunnelling is clearly irrelevant. We confirmed that the electric-
signal transmission disappears again both in Pt/Gd3Ga5O12/Pt and
Cu/Y3Fe5O12/Cu systems. The results also indicate that the electric
polarization in the insulator is irrelevant. The inset to Fig. 4d showsV
at j5 16.63 108 Am22 as a function of magnetic field strength H
(0.2 kOe,H, 3 kOe) when h5 90u. In this field range, V is min-
imally affected by the field-strength change and the role of the field
seems to be no more than that of aligning the magnetization dir-
ection. This j dependence of V at h5 90u above j5 6.03 108 Am22

deviates from the linear dependence observed in Fig. 3g. This might
be because not all the modes contribute equally to this transmission
and the population of each mode may depend on the excitation
strength (because of the intermode coupling or the spin-wave non-
linearity), but this discrepancy needs to be quantitatively elucidated.

The observed voltage transmission in an insulator provides a new
method of signal transfer, and opens the door to insulator-based
spintronics. The observed magnetization oscillation induced by the
spin-Hall effect could also be applied to the construction of a micro-
wave generator. We note that spin pumping from the insulator
enables spin injection free from the conventional impedance-match-
ing condition12. Finally, we anticipate that use of this spin transfer in
insulators will lead to substantial advances in spintronics and elec-
tronics.

METHODS SUMMARY
A single-crystal Y3Fe5O12 (111) film was grown on a Gd3Ga5O12 (111) single-
crystal substrate by liquid phase epitaxy. For the film growth, we used PbO-B2O3

flux around 1,200K. Then, a 10-nm-thick Pt layer was sputtered on the Y3Fe5O12

layer. Immediately before the sputtering, the surface was cleaned through the
metal mask by Ar-ion bombardment in a vacuum. For the spin pumping mea-
surements shown in Fig. 2, the Pt/Y3Fe5O12 sample system was placed near the
centre of a TE011 microwave cavity; at this position, the magnetic-field compon-
ent of the microwave mode is maximized while the electric-field component is
minimized. The microwave power was less than 10mW, a value lower than the
saturation of the ferromagnetic resonance absorption for the present sample. For
measuring voltage induced by the spin pumping, a twisted pair of thin coated Cu
wires (0.08mm in diameter) are connected to the ends of the Pt layer.Microwave
emission spectra were measured by attaching a gold coplanar-waveguide
antenna to the Pt surface of the Pt/Y3Fe5O12 sample film. The microwave signal
received by the antenna was led to an amplifier via a microwave probe. The
amplified microwave signal was analysed and recorded by a spectrum analyser.
Micromagnetic simulation was performed by solving numerically the Landau–
Lifshitz–Gilbert equation in which the spin torque at the interface cells are taken
into consideration (for details, see Methods).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | Electric-signal transmission via spin-wave spin currents. a, A
schematic illustration of the experimental set-up. The sample is a 1.3-mm-
thick single-crystal Y3Fe5O12 (111) film on which two separate 15-nm-thick
Pt films (i and o) are sputtered. The distance between the Pt films is 1mm.
The surfaces of the Y3Fe5O12 layer, Pt film i and Pt film o are rectangular
shapes of area (mm2) 35, 27.5 and 0.5, respectively. The distance between the
voltage electrodes (V) attached to the Pt film o is 5mm. b, In-plane spatial
distribution of the time average of the magnetization-precession amplitude
|my,z | in the Y3Fe5O12 layer numerically calculated using a stochastic

Landau–Lifshitz–Gilbert equation30 at room temperature. In the calculation,
STT22 that compensates the magnetization-damping torque at the Pt film
i/Y3Fe5O12 interface (dashed rectangle) is taken into consideration. Time
average is taken for 1ms (Supplementary Information section F). c, d, V as a
function of j in the Pt film i at h5 0u (red curve in c), h5 180u (blue curve in
c), h5 90u (red curve in d) and h5290u(blue curve in d). h is defined in
a. An in-plane magnetic field of 2.3 kOe is applied. Inset to d, V at
j5 16.63 108Am22 as a function of H (0.2 kOe,H, 3 kOe) when
h5 90u.
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nanometres, electron tunnelling could convey spin angular
momentum; in the present macroscopic-sized system, in contrast,
the tunnelling is clearly irrelevant. We confirmed that the electric-
signal transmission disappears again both in Pt/Gd3Ga5O12/Pt and
Cu/Y3Fe5O12/Cu systems. The results also indicate that the electric
polarization in the insulator is irrelevant. The inset to Fig. 4d showsV
at j5 16.63 108 Am22 as a function of magnetic field strength H
(0.2 kOe,H, 3 kOe) when h5 90u. In this field range, V is min-
imally affected by the field-strength change and the role of the field
seems to be no more than that of aligning the magnetization dir-
ection. This j dependence of V at h5 90u above j5 6.03 108 Am22

deviates from the linear dependence observed in Fig. 3g. This might
be because not all the modes contribute equally to this transmission
and the population of each mode may depend on the excitation
strength (because of the intermode coupling or the spin-wave non-
linearity), but this discrepancy needs to be quantitatively elucidated.

The observed voltage transmission in an insulator provides a new
method of signal transfer, and opens the door to insulator-based
spintronics. The observed magnetization oscillation induced by the
spin-Hall effect could also be applied to the construction of a micro-
wave generator. We note that spin pumping from the insulator
enables spin injection free from the conventional impedance-match-
ing condition12. Finally, we anticipate that use of this spin transfer in
insulators will lead to substantial advances in spintronics and elec-
tronics.

METHODS SUMMARY
A single-crystal Y3Fe5O12 (111) film was grown on a Gd3Ga5O12 (111) single-
crystal substrate by liquid phase epitaxy. For the film growth, we used PbO-B2O3

flux around 1,200K. Then, a 10-nm-thick Pt layer was sputtered on the Y3Fe5O12

layer. Immediately before the sputtering, the surface was cleaned through the
metal mask by Ar-ion bombardment in a vacuum. For the spin pumping mea-
surements shown in Fig. 2, the Pt/Y3Fe5O12 sample system was placed near the
centre of a TE011 microwave cavity; at this position, the magnetic-field compon-
ent of the microwave mode is maximized while the electric-field component is
minimized. The microwave power was less than 10mW, a value lower than the
saturation of the ferromagnetic resonance absorption for the present sample. For
measuring voltage induced by the spin pumping, a twisted pair of thin coated Cu
wires (0.08mm in diameter) are connected to the ends of the Pt layer.Microwave
emission spectra were measured by attaching a gold coplanar-waveguide
antenna to the Pt surface of the Pt/Y3Fe5O12 sample film. The microwave signal
received by the antenna was led to an amplifier via a microwave probe. The
amplified microwave signal was analysed and recorded by a spectrum analyser.
Micromagnetic simulation was performed by solving numerically the Landau–
Lifshitz–Gilbert equation in which the spin torque at the interface cells are taken
into consideration (for details, see Methods).

Full Methods and any associated references are available in the online version of
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Figure 4 | Electric-signal transmission via spin-wave spin currents. a, A
schematic illustration of the experimental set-up. The sample is a 1.3-mm-
thick single-crystal Y3Fe5O12 (111) film on which two separate 15-nm-thick
Pt films (i and o) are sputtered. The distance between the Pt films is 1mm.
The surfaces of the Y3Fe5O12 layer, Pt film i and Pt film o are rectangular
shapes of area (mm2) 35, 27.5 and 0.5, respectively. The distance between the
voltage electrodes (V) attached to the Pt film o is 5mm. b, In-plane spatial
distribution of the time average of the magnetization-precession amplitude
|my,z | in the Y3Fe5O12 layer numerically calculated using a stochastic

Landau–Lifshitz–Gilbert equation30 at room temperature. In the calculation,
STT22 that compensates the magnetization-damping torque at the Pt film
i/Y3Fe5O12 interface (dashed rectangle) is taken into consideration. Time
average is taken for 1ms (Supplementary Information section F). c, d, V as a
function of j in the Pt film i at h5 0u (red curve in c), h5 180u (blue curve in
c), h5 90u (red curve in d) and h5290u(blue curve in d). h is defined in
a. An in-plane magnetic field of 2.3 kOe is applied. Inset to d, V at
j5 16.63 108Am22 as a function of H (0.2 kOe,H, 3 kOe) when
h5 90u.
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FIG. 1. (Color online) An electrically insulating magnetic film
of thickness d with magnetization m(r, t) (kẑ at equilibrium)
in contact with a normal metal of thickness dN , with transla-
tional symmetry in the y-z plane. A spin current J

s

polarized
along ẑ is generated in the normal metal due to the spin Hall
e↵ect from the applied charge current J

c

and absorbed by the
ferromagnet. J

sp

is the SP current due to the magnetization
dynamics at the interface.

II. THEORY

In this section, we present our theory for the spin trans-
port and spin wave excitation in a normal metal (N) -
ferromagnetic insulator (FI) bilayer structure as shown
in Fig. 1, in which the FI is in-plane magnetized with the
equilibrium magnetization along the ẑ-direction.

A. Spin transport in normal metal

We assume an electric field E = Eyŷ applied in N
along ŷ. Jc = �E = Jcŷ the charge current, with � the
electric conductivity of N. Due to the spin Hall e↵ect,
a spin current polarized along ẑ flows in �x̂ direction:
JsH = ✓HJcẑ with ✓H the spin Hall angle of N. This
spin Hall current induces a spin accumulation µ(x) in N,
which satisfies the spin-di↵usion equation

r2µ(x) =
µ(x)

�

2
, (1)

where � is the spin-flip length in N. The spin current
inside N is the sum of the spin di↵usion current and the
spin Hall current

Js(x) = � �

2e

@µ(x)

@x

� ✓HJcẑ. (2)

Spin-conserving boundary conditions require that Js(x)
is continuous at the interfaces x = 0 and x = dN . Thus,

Js(dN ) = 0, Js(0) = Js0. (3)

Js0 is the spin current flowing through the N|FI interface,
which includes the STT current Jstt generated by the

spin accumulation in N on the magnetization in FI and
the SP current Jsp from FI to N:

Js0 = Jstt + Jsp

=
e

h

gr {m(0)⇥ [m(0)⇥ µ(0)]� ~m(0)⇥ ṁ(0)} , (4)

with gr the real part of the mixing conductance per area
for the N|FI interface. In Eq. (4), m and µ take the
value at the interface (x = 0). The imaginary part of the
mixing conductance is disregarded in the following.
The solution for µ(x) satisfying the spin di↵usion equa-

tion Eq. (1) and boundary condition Eq. (3) is given by

µ(x) =
2e�

�

(JsH + Js0) cosh
d
N

�x
� � JsH cosh x

�

sinh d
N

�

. (5)

By plugging the above expression into the second equa-
tion of Eq. (3), we find the interfacial value of µ(0) and
thus Js0:

Js0 =
e

h

g

0
r

⇥
m(0)⇥ (m(0)⇥ µ0

s)� ~m(0)⇥ ṁ(0)
⇤
, (6)

where µ0
s = (2e�/�)✓HJc tanh(dN/2�)ẑ is the spin ac-

cumulation at the interface due to the spin Hall current
alone, and

g

0
r =

gr

1 + 2�e2

h� gr coth
d
N

�

(7)

is the renormalized mixing conductance taking into ac-
count the e↵ect of di↵usive spin current back-flow in N.10

The interfacial spin current Js0 exerts the STT and SP
torques on m:

⌧ stt = g

0
r

e�✓HJc

2⇡�
tanh

dN

2�
m⇥ (m⇥ ẑ) �(x)

⌘ ⌧sttm⇥ (m⇥ ẑ) �(x), (8a)

⌧ sp = � ~
4⇡

g

0
rm⇥ ṁ �(x) ⌘ �⌧sp

!0
m⇥ ṁ �(x). (8b)

Fig. 2 shows the dependence of the pre-factors of these
two torques on the film thickness dN and spin di↵usion
length �. In the left panel of Fig. 2, we see that for a fixed
film thickness dN , the STT depends non-monotonically
on � and has a maximum value for an intermediate value
(indicated by the dashed line). The reason for this is
the following: when � ! 0, the spin Hall current cannot
build up any spin accumulation, thus there can be no
STT; when, on the other hand, � ! 1, Eq. (1) is solved
by µ(x) = ax+ b, which means Js(x) = const. However,
at the top surface Js(dN ) = 0, therefore the spin current
has to vanish everywhere. Both Jstt and Jsp vanishes,
because the above argument is valid for both ṁ = 0 and
ṁ 6= 0. For the SP, the right panel of Fig. 2, the behavior
is easy to understand. For � ! 0, the SP is maximal
because N becomes an ideal spin sink. As � ! 1, there is
no spin flip mechanism in N, so the pumped spin current
accumulates in N and causes a back flow spin current,
which cancels the pumped spin current.

In Pt, spin diffusion:

In YIG, Landau-Lifshitz-Gilbert equation:
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FIG. 2. (Color online) The contour plot of ⌧

stt

(at Jc =
1011A/ m2, left ) and ⌧

sp

(right ) in Eq. (8) vs. film thickness
dN and spin di↵usion length � for parameters given in Table I
and gr = 1018/ m2. The dashed curve on the left panel shows
the maximum of ⌧

stt

for fixed film thickness dN .

B. Spin wave excitation in magnetic insulators

The spatially dependent dynamics of the magnetiza-
tion unit vector m(r, t) is described by the Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation17–19:

ṁ = �� m⇥He↵ + ↵ m⇥ṁ+
�

Ms
(⌧ stt + ⌧ sp) , (9)

where the e↵ective field He↵ = H0 +Hs +
A

ex

� r2m+ h

includes the external magnetic field H0, the surface
anisotropy field Hs = 2K

1

M
s

(m·n)n, the exchange field

Hex = A
ex

� r2m, and the dipolar magnetic field h due

to m(r, t). Here n is the outward normal as seen from
the ferromagnet which can be the easy or hard axis, de-
pending on the sign of the anisotropy constant K1. Aex

and ↵ are the exchange and Gilbert damping constants,
respectively.

We include the SP in our model thereby extending our
earlier studies of spin-wave excitation in magnetic insula-
tors by the STT.6 The spin-conservation boundary con-
ditions for m at x = 0 and �d:20

at x = 0 : m⇥@m
@n

� ks(m·n)m⇥n (10a)

+ kjm⇥(m⇥ ẑ) +
kp

!0
ẑ⇥ṁ = 0,

at x = �d : m⇥@m
@n

= 0, (10b)

with @m/@n ⌘ (n·r)m and Ks =
R 0+

0�
K1dx. We convert

surface anisotropy, spin current, and SP parameters into
e↵ective wave numbers by defining:

ks =
2�Ks

AexMs
, kj =

�⌧stt

AexMs
, kp =

�⌧sp

AexMs
. (11)

Param. YIG Unit Param. Pt Unit

Ms
a1.56⇥105 A/m � e1.16⇥106 A/Vm

↵ a6.7⇥10�5 - � e2 nm

gr b1016 ⇠ 1019 1/m2 ✓H 0.08 -

Ks
c10�4 J/m2

A
ex

d8.97⇥10�6 m2/s

� 1.76⇥1011 1/(Ts)

!
0

= �H
0

d17.25 GHz

!M = �µ
0

Ms
d34.5 GHz

d 0.61 µm dN 10 nm

TABLE I. Parameters for YIG. aRef. 4, bRef. 4, 11, and 12,
c
Ks = 0.01⇠0.1 erg/ cm2 or 10�5⇠10�4 J/ m2, Ref. 13 and
14, dRef. 21, eRef. 15, fRef. 4.

Compared to our previous work,6 we now establish
the relation between spin wave vector kj and the ex-
perimentally controlled parameter, i.e. the charge cur-
rent density. For example, the bulk excitation threshold
kc = ↵(!0+!M/2)d/Aex corresponds to a charge current
of 6.6⇥ 1011A/m2 at gr = 5.9⇥ 1017/µm.
The bulk magnetization inside the film (�d < x < 0)

satisfies the LLG equation:

ṁ = �� m⇥

H0 +

Aex

�

r2m+ h

�
+ ↵ m⇥ṁ, (12)

where the dipolar magnetic field h(r, t) obeys Maxwell’s
equations in the quasi-static approximation:

everywhere: 0 = r⇥h(r), (13a)

�d  x  0 : 0 = r· [h(r) + µ0Msm(r)] , (13b)

x < �d or x > 0 : 0 = r·h(r), (13c)

with boundary conditions

hy,z(0
�) = hy,z(0

+), bx(0
�) = bx(0

+), (14a)

hy,z(�d

�) = hy,z(�d

+), bx(�d

�) = bx(�d

+). (14b)

Eqs. (10 – 14) completely describe what is called dipolar-
exchange spin waves. The method described above ex-
tends De Wames and Wolfram’s21 and Hillebrands’22 by
including the current-induced STT and SP.
Because of the translational symmetry in the lateral

direction, we may assume that the scalar potential is the
plane wave:

 (x, y, z, t) =
X3

j=1

h
aje

iq(j)
x

x + bje
�iq(j)

x

(x+d)
i
e

�iq·s
e

i!t

(15)
where s = (y, z) is the in-plane position and q =
(qy, qz) = q(sin ✓, cos ✓) with q = |q| an in-plane wave
vector and ✓ the angle between the wave vector q and
the magnetization equilibrium ẑ. aj , bj are six coe�-
cients to be determined by the six boundary conditions
in Eqs. (10, 14), which can be transformed into a set of
linear equations:

M(q,!)

 
aj

bj

!
= 0, (16)

2

YIG

m(r, t)

⌦Jc
Pt

J
stt

J
sp

z

x

0

�d

dN

FIG. 1. (Color online) An electrically insulating magnetic film
of thickness d with magnetization m(r, t) (kẑ at equilibrium)
in contact with a normal metal of thickness dN , with transla-
tional symmetry in the y-z plane. A spin current J

s

polarized
along ẑ is generated in the normal metal due to the spin Hall
e↵ect from the applied charge current J

c

and absorbed by the
ferromagnet. J

sp

is the SP current due to the magnetization
dynamics at the interface.

II. THEORY

In this section, we present our theory for the spin trans-
port and spin wave excitation in a normal metal (N) -
ferromagnetic insulator (FI) bilayer structure as shown
in Fig. 1, in which the FI is in-plane magnetized with the
equilibrium magnetization along the ẑ-direction.

A. Spin transport in normal metal

We assume an electric field E = Eyŷ applied in N
along ŷ. Jc = �E = Jcŷ the charge current, with � the
electric conductivity of N. Due to the spin Hall e↵ect,
a spin current polarized along ẑ flows in �x̂ direction:
JsH = ✓HJcẑ with ✓H the spin Hall angle of N. This
spin Hall current induces a spin accumulation µ(x) in N,
which satisfies the spin-di↵usion equation

r2µ(x) =
µ(x)

�

2
, (1)

where � is the spin-flip length in N. The spin current
inside N is the sum of the spin di↵usion current and the
spin Hall current

Js(x) = � �

2e

@µ(x)

@x

� ✓HJcẑ. (2)

Spin-conserving boundary conditions require that Js(x)
is continuous at the interfaces x = 0 and x = dN . Thus,

Js(dN ) = 0, Js(0) = Js0. (3)

Js0 is the spin current flowing through the N|FI interface,
which includes the STT current Jstt generated by the

spin accumulation in N on the magnetization in FI and
the SP current Jsp from FI to N:

Js0 = Jstt + Jsp

=
e

h

gr {m(0)⇥ [m(0)⇥ µ(0)]� ~m(0)⇥ ṁ(0)} , (4)

with gr the real part of the mixing conductance per area
for the N|FI interface. In Eq. (4), m and µ take the
value at the interface (x = 0). The imaginary part of the
mixing conductance is disregarded in the following.
The solution for µ(x) satisfying the spin di↵usion equa-

tion Eq. (1) and boundary condition Eq. (3) is given by

µ(x) =
2e�

�

(JsH + Js0) cosh
d
N

�x
� � JsH cosh x

�

sinh d
N

�

. (5)

By plugging the above expression into the second equa-
tion of Eq. (3), we find the interfacial value of µ(0) and
thus Js0:

Js0 =
e

h

g

0
r

⇥
m(0)⇥ (m(0)⇥ µ0

s)� ~m(0)⇥ ṁ(0)
⇤
, (6)

where µ0
s = (2e�/�)✓HJc tanh(dN/2�)ẑ is the spin ac-

cumulation at the interface due to the spin Hall current
alone, and

g

0
r =

gr

1 + 2�e2

h� gr coth
d
N

�

(7)

is the renormalized mixing conductance taking into ac-
count the e↵ect of di↵usive spin current back-flow in N.10

The interfacial spin current Js0 exerts the STT and SP
torques on m:

⌧ stt = g

0
r

e�✓HJc

2⇡�
tanh

dN

2�
m⇥ (m⇥ ẑ) �(x)

⌘ ⌧sttm⇥ (m⇥ ẑ) �(x), (8a)

⌧ sp = � ~
4⇡

g

0
rm⇥ ṁ �(x) ⌘ �⌧sp

!0
m⇥ ṁ �(x). (8b)

Fig. 2 shows the dependence of the pre-factors of these
two torques on the film thickness dN and spin di↵usion
length �. In the left panel of Fig. 2, we see that for a fixed
film thickness dN , the STT depends non-monotonically
on � and has a maximum value for an intermediate value
(indicated by the dashed line). The reason for this is
the following: when � ! 0, the spin Hall current cannot
build up any spin accumulation, thus there can be no
STT; when, on the other hand, � ! 1, Eq. (1) is solved
by µ(x) = ax+ b, which means Js(x) = const. However,
at the top surface Js(dN ) = 0, therefore the spin current
has to vanish everywhere. Both Jstt and Jsp vanishes,
because the above argument is valid for both ṁ = 0 and
ṁ 6= 0. For the SP, the right panel of Fig. 2, the behavior
is easy to understand. For � ! 0, the SP is maximal
because N becomes an ideal spin sink. As � ! 1, there is
no spin flip mechanism in N, so the pumped spin current
accumulates in N and causes a back flow spin current,
which cancels the pumped spin current.

s = (y, z), q = (qy, qz)

n

n

surface normalµ(x)

boundary conditions:

1) spin current vanishes at top 

surface of Pt at x = dN

2) spin current is continuous at 

the Pt|YIG interface

3) spin current vanishes at the 

bottom YIG surface at x = -d

m(r, t) = mz +m?e
i(!t�q·s)

h(r, t) = hz + h?e
i(!t�q·s)

 (r, t) =  (x)ei(!t�q·s)
complex dispersion:

Im (!(q, kj)) < 0

!(q, kj)

criteria for excitation: 
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FIG. 6. (Color online) Spin wave dissipation at ✓ = ⇡/2 (or q ? m) with gr = 5.8 ⇥ 1017/m2 (kp = 0.01/µm). Top row:
no surface anisotropy (ks = 0), bottom row: with easy-axis surface anisotropy (ks = 25/µm). The 1st column is the total
dissipation with current injection of Jc = 2.3⇥ 1011A/m2 (kj = 0.35kc). The 2nd column to 4th column are the contributions
from the Gilbert damping, STT, and SP, respectively. For all panels, the solid lines (di↵erent colors denote di↵erent bands) are
calculated from the numerical solution of Eq. (16), and the dashed lines (and the I) are plotted using the analytical expressions
given by the imaginary parts of Eqs. (18 – 23).

responding to the flat bands) are simply the standing
waves confined by the film thickness d. The MSW mode
(thick purple curve in Fig. 4(b)) is a surface wave, but
with a very long penetration depth, which means that the
MSW mode for small q is actually more like a uniform
mode rather than a surface mode.

The more interesting physics happens when including
the surface anisotropy ks, which can take either sign:
ks > 0 means that the surface spins tend to align with the
surface normal and is called easy-axis surface anisotropy
(EASA), while ks < 0 means that the surface spins tend
to lie in the plane of the surface and is called hard-
axis surface anisotropy (HASA). One e↵ect of the sur-
face anisotropy is to shift the bulk band frequencies as
indicated by Eq. (18): the positive/negative ks shift the
frequencies downwards/upwards. For EASA (ks > 0), as
discussed in our previous study,6 a new type of surface
spin wave mode (the lowest thick black band in Fig. 5(a))
appears. The magnetization profile for this EASA sur-
face wave at qd = 0.09 (the mode indicated by the circle
on the thick black band in Fig. 5(a)) is plotted as the
thick black curve in Fig. 5(b), which shows its surface
feature. The penetration depth ds of the EASA sur-
face wave is inversely proportional to the strength of the
EASA: ds / 1/ks.6

B. Spin wave dissipation

The STT and SP mainly a↵ect the dissipation of spin
waves i.e. the imaginary part of the mode frequency, and
leave the spin wave dispersion and profiles discussed in
the previous section practically unchanged.
The spin wave dissipation, Im !, is plotted in the 1st

column of Fig. 6 for the two cases of surface anisotropy as
those in Fig. 4 and Fig. 5: ks = 0 (top) and ks = 25/µm
(bottom). In both plots, STT due to current injection
Jc = 2.3⇥1011A/m2 and SP are included. The interfacial
mixing conductance value is taken as gr = 5.8⇥1017/m2.
In linear response regime, di↵erent mechanisms for the

spin wave dissipation are additive. As indicated by the
analytical results Eqs. (18 – 23) in Section III, there are
three di↵erent contributions to the dissipative imaginary
part Im !: the Gilbert damping (↵ term), STT (kj term),
and SP (kp term). We plot these contributions to Im !

separately in the 2nd-4th column in Fig. 6. The 2nd
column, the Gilbert damping contribution, is equivalent
to the dissipation for a YIG film without Pt capping
layer (thus no STT or SP). The 3rd and 4th columns are
the contributions from STT and SP respectively, which
show very similar q-dependence in shape but with op-
posite sign. Apart from an overall prefactor determined
by the structure and material parameters (⌧stt and ⌧sp

in Eq. (8)), the overall shape of STT and SP is deter-
mined by the interfacial transverse magnetization m?(0)
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FIG. 6. (Color online) Spin wave dissipation at ✓ = ⇡/2 (or q ? m) with gr = 5.8 ⇥ 1017/m2 (kp = 0.01/µm). Top row:
no surface anisotropy (ks = 0), bottom row: with easy-axis surface anisotropy (ks = 25/µm). The 1st column is the total
dissipation with current injection of Jc = 2.3⇥ 1011A/m2 (kj = 0.35kc). The 2nd column to 4th column are the contributions
from the Gilbert damping, STT, and SP, respectively. For all panels, the solid lines (di↵erent colors denote di↵erent bands) are
calculated from the numerical solution of Eq. (16), and the dashed lines (and the I) are plotted using the analytical expressions
given by the imaginary parts of Eqs. (18 – 23).

responding to the flat bands) are simply the standing
waves confined by the film thickness d. The MSW mode
(thick purple curve in Fig. 4(b)) is a surface wave, but
with a very long penetration depth, which means that the
MSW mode for small q is actually more like a uniform
mode rather than a surface mode.

The more interesting physics happens when including
the surface anisotropy ks, which can take either sign:
ks > 0 means that the surface spins tend to align with the
surface normal and is called easy-axis surface anisotropy
(EASA), while ks < 0 means that the surface spins tend
to lie in the plane of the surface and is called hard-
axis surface anisotropy (HASA). One e↵ect of the sur-
face anisotropy is to shift the bulk band frequencies as
indicated by Eq. (18): the positive/negative ks shift the
frequencies downwards/upwards. For EASA (ks > 0), as
discussed in our previous study,6 a new type of surface
spin wave mode (the lowest thick black band in Fig. 5(a))
appears. The magnetization profile for this EASA sur-
face wave at qd = 0.09 (the mode indicated by the circle
on the thick black band in Fig. 5(a)) is plotted as the
thick black curve in Fig. 5(b), which shows its surface
feature. The penetration depth ds of the EASA sur-
face wave is inversely proportional to the strength of the
EASA: ds / 1/ks.6

B. Spin wave dissipation

The STT and SP mainly a↵ect the dissipation of spin
waves i.e. the imaginary part of the mode frequency, and
leave the spin wave dispersion and profiles discussed in
the previous section practically unchanged.
The spin wave dissipation, Im !, is plotted in the 1st

column of Fig. 6 for the two cases of surface anisotropy as
those in Fig. 4 and Fig. 5: ks = 0 (top) and ks = 25/µm
(bottom). In both plots, STT due to current injection
Jc = 2.3⇥1011A/m2 and SP are included. The interfacial
mixing conductance value is taken as gr = 5.8⇥1017/m2.
In linear response regime, di↵erent mechanisms for the

spin wave dissipation are additive. As indicated by the
analytical results Eqs. (18 – 23) in Section III, there are
three di↵erent contributions to the dissipative imaginary
part Im !: the Gilbert damping (↵ term), STT (kj term),
and SP (kp term). We plot these contributions to Im !

separately in the 2nd-4th column in Fig. 6. The 2nd
column, the Gilbert damping contribution, is equivalent
to the dissipation for a YIG film without Pt capping
layer (thus no STT or SP). The 3rd and 4th columns are
the contributions from STT and SP respectively, which
show very similar q-dependence in shape but with op-
posite sign. Apart from an overall prefactor determined
by the structure and material parameters (⌧stt and ⌧sp

in Eq. (8)), the overall shape of STT and SP is deter-
mined by the interfacial transverse magnetization m?(0)
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whose solution is the complex eigenfrequencies ωS for the EASA surface wave. By expanding Eq. (22) up to the
leading orders in α, kj , kp, and assuming Aexk2

s ! 2ω0 + ωM , we have:

ωS =
√

ω0(ω0 + ωM )

+ i
(
ω0 +

ωM

2

) [
α +

4Aexkskjω0

(2ω0 + ωM )2

(
1 + ks

√
Aex(ω0 + 2ωM )2

(2ω0 + ωM )3

)
+

2Aexkskp

2ω0 + ωM

(
1 + ks

√
Aex(ω0 + ωM )2

(2ω0 + ωM )3

)]
. (23)

Im ωS < 0 leads to:

Jth = −
σ coth dN

2λ

2θHλe



απAexMs

g′rγ

(
(2ω0 + ωM )2

ksAexω0
− ω0 + 2ωM

ω0

√
2ω0 + ωM

Aex

)
+ !



ω0 +
ωM

2
− ks

2

√
Aexω2

M

2ω0 + ωM







 .

(24)

The first term of Eq. (24) gives the threshold current
that compensates the Gilbert damping α for the EASA
surface wave of penetration depth ds ∝ 1/ks (from the
first term in the first square bracket). The second term
of Eq. (24) compensates the SP enhanced damping.

Since Jth in Eq. (24) is the threshold current for EASA
surface wave at q = 0, so it actually provides a upper
bound for the overall threshold current for the spin wave
excitation. However, the excitation threshold current for
the EASA surface wave is well below that of other spin
wave modes in many cases (i.e. for not too small ks),
Jth in Eq. (24) is the overall threshold current for spin
wave excitation in a Pt|YIG bilayer. Fig. 3 shows this
threshold current as a function of mixing conductance
gr. When gr is not too large (such that g′r $ gr), the
threshold current approximately decreases linearly with
gr: Jth ∝ 1/gr, because the STT approximately increases
linearly with gr (see the linear part of left panel in Fig. 3).
However, when gr is large, g′r $ 1, then Jth is indepen-
dent of gr, and Jth reaches its lower bound (see the flat
part of the left panel in Fig. 3). Overall, we expect Jth

given by Eq. (24) to work well as the overall threshold
current for intermediate ks. It does not work for small ks,
because the penetration depth of EASA surface wave is
too long, and the other modes actually have lower thresh-
old current. For larger ks, Eq. (24) simply does not work
because it is derived assuming small ks.

We may also calculate the spin wave profile for the
EASA surface wave. Using Eq. (23)

q1 = −i

√
2ω0 + ωM

Aex
(25a)

q2 = −i
ω0ks

2ω0 + ωM

(
1 + ks

√
Aex(ω0 + ωM )2

(2ω0 + ωM )3

)
. (25b)

Since q1,2 are both negative imaginary, the corresponding
spin waves in Eq. (20) are localized near the surface. The
spin wave profile (the x component) for the EASA surface
wave for a semi-infinite film is approximately given by:

mx(x) =
(q1 + iks)eiq2x − (q2 + iks)eiq1x

q1 − q2
. (26)

Since |q1| % |q2|, the penetration depth is mostly deter-
mined by q2: ds ∝ 1/iq2 ∝ 1/ks for small ks. The spin
wave profile in Eq. (26) is compared with the numerical
calculation in the left panel of Fig. 3. The agreement is
quite good except for locations near the bottom surface
(x/d → 1) because Eq. (26) is calculated for semi-infinite
films, while the numerical data are computed for a thin
film of finite thickness d = 0.61µm. The deviation at
x/d → 1 reflects the bottom surface (at x = −d) in-
fluence on the EASA surface wave localized at the top
surface at x = 0. Not surprisingly, the effect of the bot-
tom surface is more obvious for the EASA surface wave
that is less confined (smaller ks).

IV. NUMERICAL RESULTS

In this Section, we discuss the effects of the STT and
SP on the spin wave excitation. Because of their inter-
facial character, both STT and SP are more effective for

ks 25 m

ks 0

1015 1016 1017 1018 1019 1020

1011

1012

1013

gr 1 m2

J th
A
m
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FIG. 3. (Color online) Left: Jth in Eq. (24) vs. the mixing
conductance gr (log-log scale) for ks = 25/µm with dN = 10
nm and λ = 2 nm. The dots are the threshold current ob-
tained from numerical calculations below for ks = 25/µm and
ks = 0. Right: The magnetization profiles for the EASA sur-
face wave for various ks values. The solid curves are plotted
using Eq. (26) for a semi-infinite film. The dots are obtained
by numerical calculations for d = 0.61µm.
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FIG. 7. (Color online) Power spectrum (resolution δω/ωM =
0.01) for different combinations of surface anisotropy and mix-
ing conductance at ten current levels (increasing by δkj =
0.01kc) above threshold current.

For the case with EASA (ks = 25/µm, bottom panels
in Fig. 6), the features of large/small STT/SP contribu-
tions are due to the same reason as in the no surface
anisotropy case that they all determined by the interfa-
cial value m⊥(0) for a specific mode. The main difference
between these two surface anisotropy cases is from the
additional EASA surface wave (the lowest thick black
band in Fig. 5(a)). Because of its strong localization
near the interface, STT and SP strongly affect this mode,
and the STT/SP contribution for this mode (the black
curve in the bottom right two panels of Fig. 6) becomes
larger. For two typical modes indicated by circles on the
black/red bands, the large STT and SP contributions are
caused by their surface wave features, as observed in their
profiles (thick black/red curves in Fig. 5(b)/(c)).

Overall, STT and SP have a larger effect on surface
waves, such as the MSW (at larger q) and EASA surface
waves. Therefore, in the absence of an applied current,
the surface waves have larger damping due to larger SP
contribution. When a large enough charge current is ap-
plied, the STT contribution overcomes that of the Gilbert
damping and SP, and excites preferably surface waves.

C. Power spectrum and threshold current

Since there are multiple spin wave modes excited si-
multaneously by the STT, we study the frequency de-
pendence of the excitation power. Because the theory is
based on linear response, we can only predict the onset of
the excitation of a certain spin wave mode. Its tendency
of being excited can be measured by the value of Im ω:

a more negative Im ω implies more power. Therefore, we
define an approximate power spectrum for the spin wave
excitation:

P (ω) =
∑

n

∫

Im ωn<0
|Im ωn(q)|δ[ω − Re ωn(q)]dq,

(27)
which summarizes the information about the mode-
dependent current-induced amplification as a sum over
bands with band index n. Fig. 7 shows the power
spectrum computed from Eq. (27) for different surface
anisotropies and mixing conductances.

Let us first inspect the effect of EASA. As seen in
Fig. 3(b) (the filled/empty dots are for with/without
EASA), EASA reduces the threshold current by about
a factor of two. In addition, EASA also greatly enhances
the excitation power, as seen by the comparison between
the top and bottom panels in Fig. 7. The reason for this
effect is the strong confinement of the EASA mode (see
thick black profile in Fig. 5(b)) and correspondingly low
threshold current (given by Eq. (24)). Almost all EASA
modes in q phase space are excited simultaneously (see
the lower panels of Fig. 6). Easy excitation and the large
excitation phase space, lead to the large excitation power
in the presence of EASA. In comparison, for ks = 0 the
excitation threshold current is higher and the modes that
can be excited occupy only a small area of phase space
(only a small window of the green band can be excited
as seen in Fig. 6).

It is also interesting to compare the power spectrum for
different mixing conductances gr. Comparing Fig. 7(a -
b) for ks = 0 (or Fig. 7(c - d) for ks = 25/µm), we
observe that an increasing mixing conductance tends to
shift the power spectrum to lower frequencies, or cause
a red shift. Both the STT and SP depend on (or are
proportional to) the mixing conductance gr (see Eq. (8))
and the interfacial value of the transverse magnetization
m⊥(0), which dominates the q-dependence. The SP also
depends on the frequency ṁ(0) and is more effective for
the high frequency modes, while the STT does not de-
pend explicitly on frequency. As a consequence, a large
mixing conductance tends to suppress the excitation of
high frequency modes, thereby causing a red shift of the
power spectrum.

V. DISCUSSIONS & CONCLUSIONS

The EASA induced surface wave mode for ks > 0 has
several properties which make this mode superior for spin
information processing and transport: 1) it can be eas-
ily induced unintentionally or by engineering the surface
anisotropy, 2) its penetration depth is controlled by the
strength of the surface anisotropy, 3) it can be excited by
relatively small currents, 4) it has a finite group veloc-
ity and can propagate long distances (in the absence of
SP). The required surface anisotropy for this new surface
mode is ubiquitous in magnets and sensitive to surface


