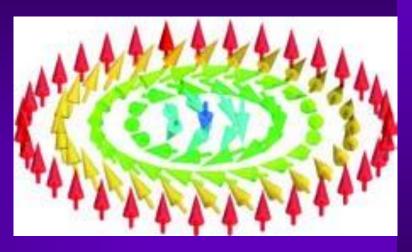
See also talks online by Tokura, Tchernyshyov

Magnetic skyrmions

Rembert Duine

with Marianne Knoester (UU)
Jairo Sinova (Texas A&M, Mainz)
ArXiv 1310.2850

Institute for Theoretical Physics
Utrecht University


Outline:

- □ What are magnetic skyrmions?: topology and energetics
- □ Skyrmion lattices and single skyrmions
- □ Interactions between skyrmions and current
 - weak and strong spin-orbit coupling
- □ (My) motivation: skyrmions are testing ground for current-magnetization interaction

Single magnetic (baby-)skyrmion

"hedgehog"

"vortex-like"

- Spins down at core, up everywhere else, homogeneous in *z*-direction
- Topological excitation,

characterized by winding number: $4\pi W = \int d\vec{x} \,\Omega \cdot \frac{\partial\Omega}{\partial x} \times$

Even topologically speaking, not all bubbles are skyrmions...

W=1 chiral

W=0
Not chiral

Skyrmion energetics (I)

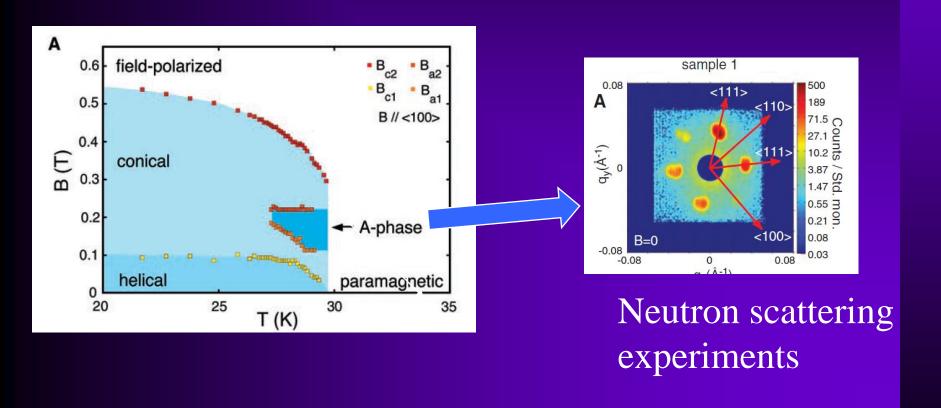
□ Chirality set by Dzyaloshinskii-Moriya interactions:

$$E_{
m DMI} = D \cdot \Omega_1 imes \Omega_2$$
 with $D \propto R_1 imes R_2$ Ω_1 magnetic atoms R_1

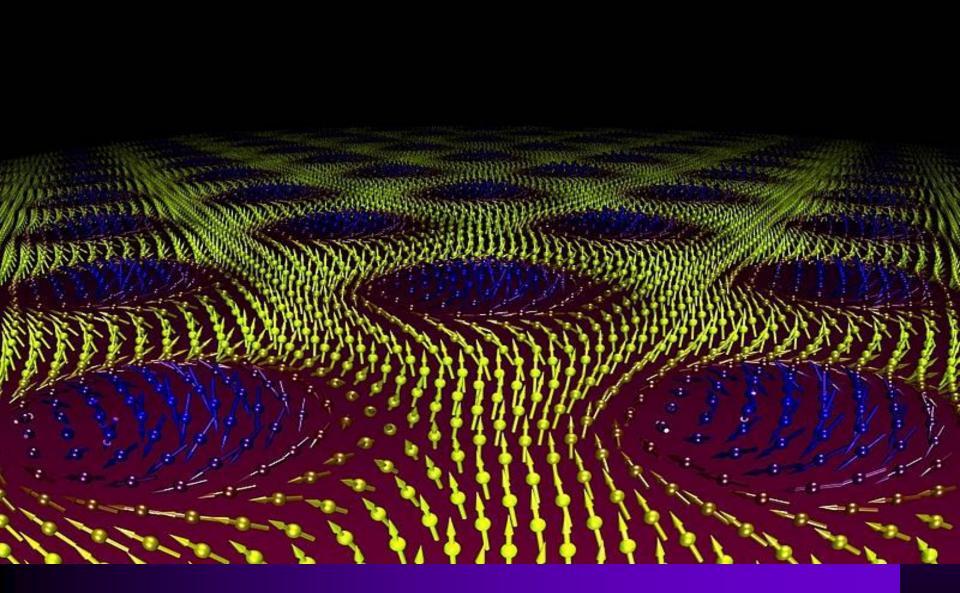
Need inversion asymmetry + spin-orbit coupling

non-magnetic, strong spin-orbit coupling

Skyrmion energetics (II)


□ Example of energy with bulk DM-interaction (MnSi) – favors vortex-like skyrmions:

$$E = \int d\boldsymbol{x} \left\{ -\frac{J_s}{2} \boldsymbol{\Omega} \cdot \nabla^2 \boldsymbol{\Omega} + D \boldsymbol{\Omega} \cdot \nabla \times \boldsymbol{\Omega} - H \boldsymbol{\Omega}_z - \boldsymbol{\Omega} \cdot \boldsymbol{H}_d \right\}$$


Size of spiral/skyrmion: $\sim J_s/D$

Skyrmions stable for fields: $H \sim J_s D^2$

Skyrmion lattices

Mühlbauer et al., (2009); Tokura/Wiesendanger groups

Mühlbauer et al., (2009)

Skyrmions/bubbles/vortices

- □ Skyrmions: topological (*W*=integer), exchange vs. DM interactions
- Bubbles: strictly speaking do not have to be topological, exchange vs. surface stray fields
- Magnetic vortices: exchange vs. dipolar field in magnetic disk, W=half-integer ("meron")

What about interaction with current?

Current-magnetization interaction

□ Assume weak intrinsic spin-orbit coupling:

$$\left. \frac{\partial \mathbf{\Omega}}{\partial t} \right|_{\text{current}} = a \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega} + a' \mathbf{\Omega} \times \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega}$$

$$j_{\alpha}^{\Omega} = \frac{\sigma M}{\gamma} \left\{ a \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \left(\Omega \times \frac{\partial \Omega}{\partial t} \right) - a' \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \frac{\partial \Omega}{\partial t} \right\}$$

Not restricted to solid state

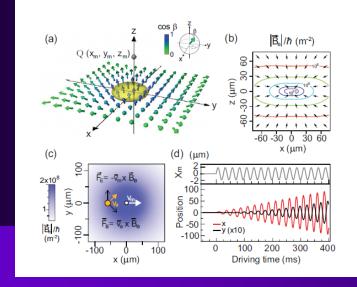
PRL **110,** 260404 (2013)

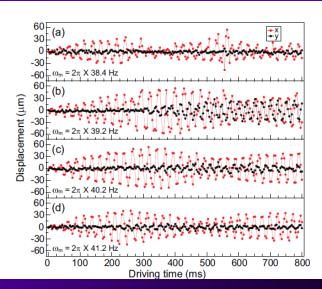
PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Magnetization Relaxation and Geometric Forces in a Bose Ferromagnet

J. Armaitis,* H. T. C. Stoof, and R. A. Duine


Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 27 March 2013; published 26 June 2013)


Observation of a Geometric Hall Effect in a Spinor Bose-Einstein Condensate

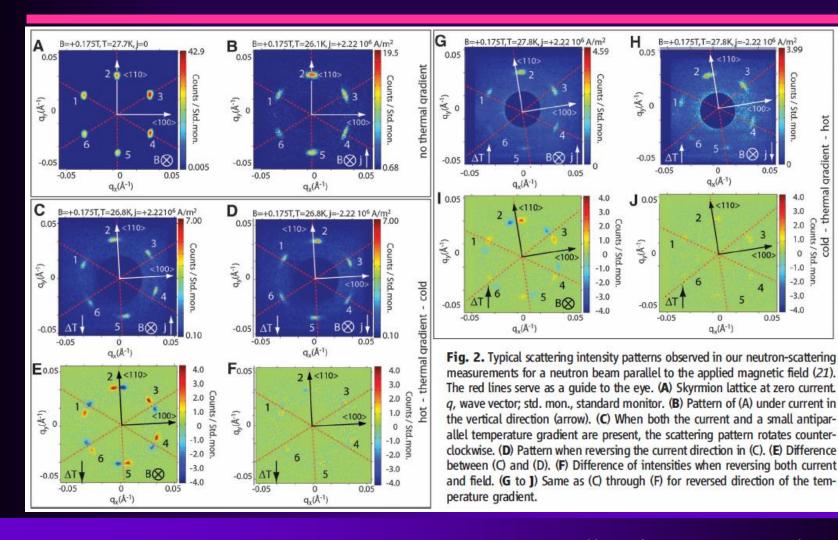
Jae-yoon Choi, Seji Kang, Sang Won Seo, Woo Jin Kwon, and Yong-il Shin*

Center for Subwavelength Optics and Department of Physics and Astronomy,

Seoul National University, Seoul 151-747, Korea

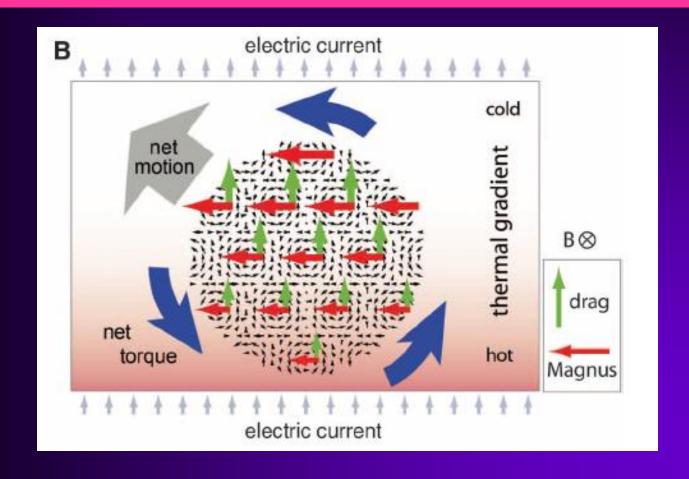
Current-magnetization interaction

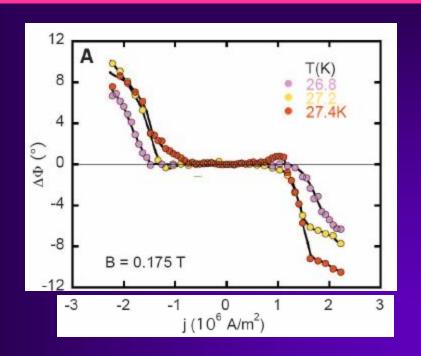
☐ Assume negligible intrinsic spin-orbit coupling:


$$\left. \frac{\partial \mathbf{\Omega}}{\partial t} \right|_{\text{current}} = a \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega} + a' \mathbf{\Omega} \times \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega}$$

$$j_{\alpha}^{\Omega} = \frac{\sigma M}{\gamma} \left\{ a \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \left(\Omega \times \frac{\partial \Omega}{\partial t} \right) - a' \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \frac{\partial \Omega}{\partial t} \right\}$$

Volovik, Bazaliy, Zhang/Li, Barnes/Maekawa, Brataas/Bauer/Tserkovnyak, RD, Tserkovnyak/Mecklenburg, Tatara/Shibata/Kohno...


Experimental results: Current-driven rotation of skX


thermal gradient - hot

2.0 1.0

Interpretation

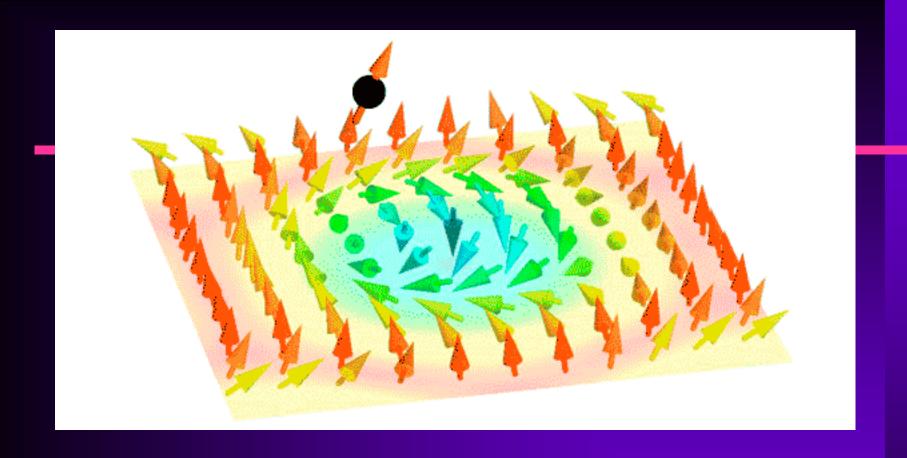
Critical current

Orders of magnitude smaller than for current-driven domain walls: skyrmion lattice weakly pinned to lattice, couples to current globally

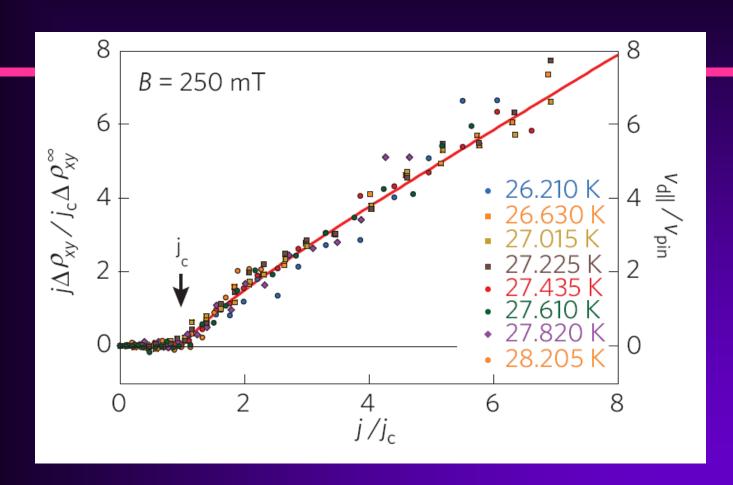
Jonietz, ...RD, Pfleiderer, Rosch (2010)

Topological Hall effect detection

Consider equation for the current:


$$j_{\alpha}^{\Omega} = \frac{\sigma M}{\gamma} \left\{ a \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \left(\Omega \times \frac{\partial \Omega}{\partial t} \right) - a' \frac{\partial \Omega}{\partial x_{\alpha}} \cdot \frac{\partial \Omega}{\partial t} \right\}$$

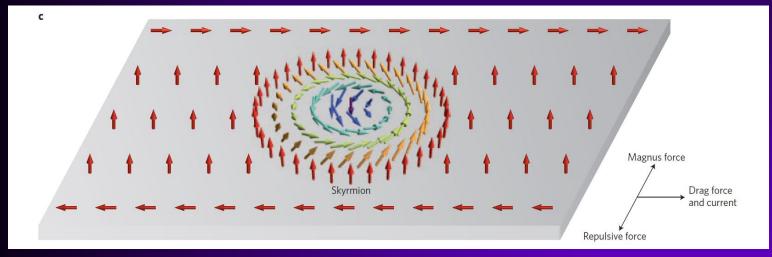
Allow for skyrmion motion and external current:


$$\frac{\partial}{\partial t} \rightarrow \underbrace{\frac{\partial}{\partial t}}^{+} (\boldsymbol{v}_{\mathrm{skyrmion}} - \boldsymbol{v}_{\mathrm{drift}}) \cdot \boldsymbol{\nabla}$$

$$\boldsymbol{j^\Omega} \propto aW\hat{z} \times (\boldsymbol{v_{\mathrm{skyrmion}}} - \boldsymbol{v_{\mathrm{drift}}})$$

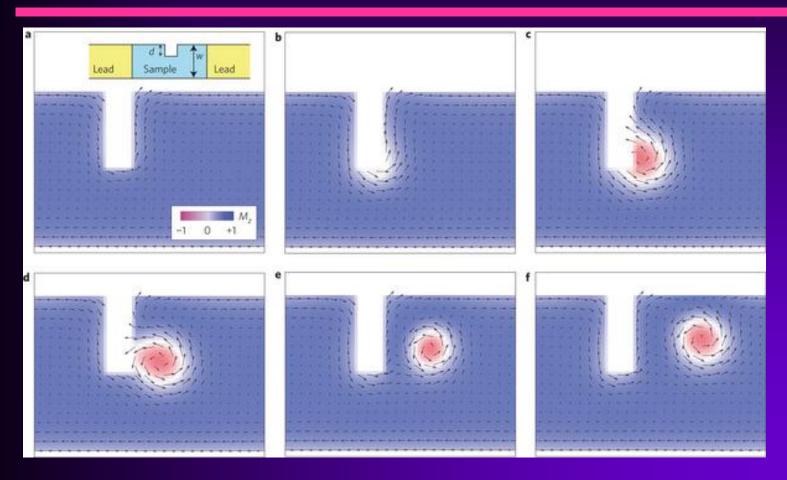
Hall signal drops when skyrmions move!

Topological contribution Hall effect; Reduces when skyrmion lattice slides



Experimental proof skyrmion lattice is sliding (neutron scattering proved rotation only)

What about single skyrmions?

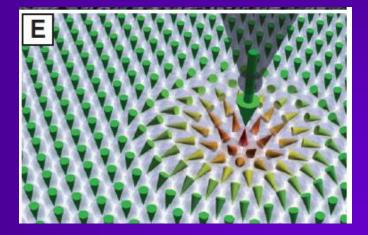

Motion of single skyrmions

RD, N&V(2013)

DM interactions lead to repulve force from edge that balances Magnus force; drag most important: $|v_{\rm skyrmion}| \propto \frac{F_{\rm drag}}{{\rm damping}}$

Skyrmion nucleation (I)

Nucleation only for one current direction


Skyrmion nucleation (II)

Writing and Deleting Single Magnetic Skyrmions

Niklas Romming, Christian Hanneken, Matthias Menzel, Jessica E. Bickel,* Boris Wolter, Kirsten von Bergmann,† André Kubetzka,† Roland Wiesendanger

Science (2013)

- Spin-polarized STM
- Low *T*

Summary (so far:)

- □ Skyrmion lattices (theory and experiments):
 - current-driven motion: low T + near room T
 - electrical detection: topo Hall effect (low T + near room T)
 - nucleation/destruction: STM at low T
- □ Single skyrmions
 - current-driven motion (theory)
 - nucleation: notches (theory)
 - electrical detection: ?

Rest of talk

- Motivated by experiments on chiral domain walls: skyrmions in system with inversion asymmetry in one (=z) direction: perpendicular magnetic anisotropy (PMA) materials
- □ Include intrinsic spin-orbit coupling in current-skyrmion coupling [for MnSi; Hals/Brataas (2013)]
- □ Skyrmions allow for classification in powers of spin-orbit coupling of phenomenological terms

Phenomenological energy from symmetry:

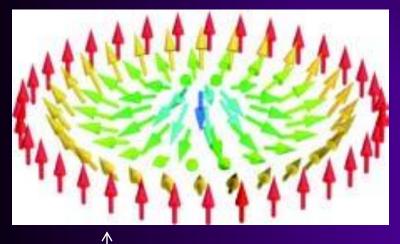
Now: look at strong SO coupling + breaking of inversion in z-direction (due to interface)

$$Dzyaloshinkii-Moriya$$

$$Anisotropy: \qquad (DM) \ interaction$$

$$\uparrow \qquad \qquad \uparrow$$

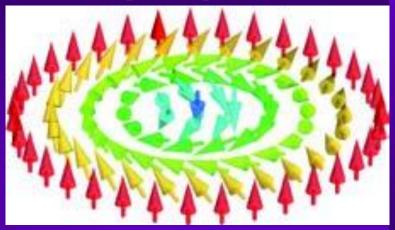
$$E = \int d\vec{x} \left\{ -J\vec{\Omega}.\nabla^2\vec{\Omega} - K(\hat{z}\cdot\vec{\Omega})^2 + D(\hat{z}\times\vec{\Omega})\cdot(\nabla\times\vec{\Omega}) \right\}$$

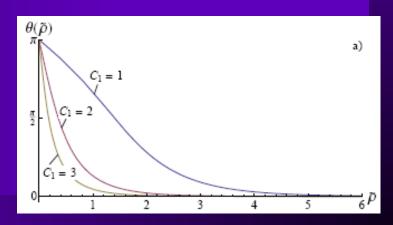

Only term allowed without SO coupling (anisotropy in J=ignored)

Experimental motivation:

Miron et al., Beach et al., Parkin et al., Ralph/Burhman et al., ...

Skyrmions in PMA materials


Favoured by interface DM interaction



Parameters of Beach et al.: these are the ones in PMA materials

Size: J/D~10 nm gradient~SOC^1

Favoured by bulk DM interaction (MnSi), dipole-dipole

Knoester, Sinova, Duine, ArXiv (2013)

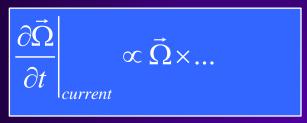
Phenomenological point-ofview

First: Current-induced torques on homogeneous magnetization (linear in electric field):

$$\left. \frac{\partial \vec{\Omega}}{\partial t} \right|_{current} \propto \vec{\Omega} \times \left(\vec{E} \times \hat{z} \right) + \beta' \vec{\Omega} \times \left(\vec{\Omega} \times \left(\vec{E} \times \hat{z} \right) \right)$$

- spin-orbit coupling: spatial and spin vectors allowed to "mix"
- Broken inversion symmetry: torques allowed to depend on \hat{z}
- Parity: each electric field comes with \hat{z}
- Microscopically: due to spin-current injection via SHE or Rashba spin-orbit couplin, or Berry-``field'' (cf. Sinova et al.)

Phenomenological point-ofview


Current-induced torques on inhomogeneous magnetization:

$$\frac{\partial \vec{\Omega}}{\partial t} \bigg|_{current} \propto \vec{\Omega} \times (\vec{E} \times \hat{z}) + \beta' \vec{\Omega} \times (\vec{\Omega} \times (\vec{E} \times \hat{z})) \\
+ \vec{\Omega} \times (\vec{\Omega} \times (\vec{E} \cdot \nabla) \vec{\Omega}) + \beta \vec{\Omega} \times (\vec{E} \cdot \nabla) \vec{\Omega}$$

This can —from symmetry point-of-view — not be the complete description, for e.g., domain-wall motion!! There should be torques from combination of gradients and SO coupling!

Phenomenological point-of-view

Current-induced torques on inhomogeneous magnetization:

- ...=any pseudovector that:
 - One can build from \hat{z} , ∇ , $\vec{\Omega}$, and/or \vec{E}
 - Is first order in electric field (linear response) and/or gradients

Examples of symmetryallowed torques:

$$\left. \frac{\partial \vec{\Omega}}{\partial t} \right|_{current} \propto \# ... + \# \vec{\Omega} \times ...$$

$$\sum_{j=x,y,z} \left(\vec{\Omega} \times \vec{E} \right)_j \left(\vec{\Omega} \times \nabla \right) \Omega_j$$

$$\left(\vec{E}\cdot
abla
ight)\vec{\Omega} \qquad \left(\vec{\Omega}\cdot\vec{E}
ight)\!\left(\vec{\Omega}\cdot
abla
ight)\vec{\Omega}$$

$$\left(\left(ec{\Omega} \! imes \! ec{E}
ight) \! \cdot \!
abla
ight) \! ec{\Omega} \qquad \left(ec{\Omega} \! imes \! ec{E}
ight) \! \left(
abla \! \cdot \! ec{\Omega}
ight)$$

$$\sum E_{j} (\vec{\Omega} \times \nabla) \Omega_{j} \qquad (\vec{\Omega} \times \vec{E}) \vec{\Omega} \cdot (\nabla \times \vec{\Omega})$$

14 symmetry-allowed torques, not including z-direction yet..., some have straightforward interpretation, some don't ...

Power-counting of current-induced torques:

Order: SOC^1 * gradient^0 $\propto ec{\Omega} imes \left(ec{j} imes \hat{z}
ight) + eta ' ec{\Omega} imes \left(ec{\Omega} imes \left(ec{j} imes \hat{z}
ight)
ight)$ $+\vec{\Omega} \times (\vec{\Omega} \times (\vec{j} \cdot \nabla)\vec{\Omega}) + \beta \vec{\Omega} \times (\vec{j} \cdot \nabla)\vec{\Omega} + many\ more$

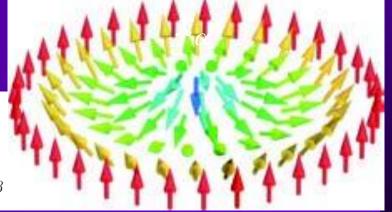
Order: SOC^0 * gradient^1

Order: SOCM * gradient^1

Order SOC^1 for skyrmions!

Order SOC^2 for skyrmions!

Thiele equation for position of skyrmion:


Phenomenologuy of current-skyrmion coupling to first order in SO coupling (other torques 2nd order):

$$\frac{\partial \mathbf{\Omega}}{\partial t} \bigg|_{\text{current}} = a \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega} + a' \mathbf{\Omega} \times \left(\mathbf{j} \cdot \nabla \right) \mathbf{\Omega} + b \mathbf{\Omega} \times \left(\mathbf{j} \times \hat{z} \right) + b' \mathbf{\Omega} \times \left[\mathbf{\Omega} \times \left(\mathbf{j} \times \hat{z} \right) \right] ,$$

Thiele equation:

$$\epsilon_{\alpha\beta} \left(\dot{X}_{\beta} + a j_{\beta} \right) =$$

$$-D_{\alpha\beta} \left(\alpha_{G} \dot{X}_{\beta} + a' j_{\beta} \right) + b \lambda I_{\alpha\beta} j_{\beta} + b' \lambda I'_{\alpha\beta} j_{\beta}$$

Estimates (only b'): speed~1-100 m/s

Resistivity due to currentskyrmion coupling

Topological Hall

Drag effects
(Wong/Tserkovnyak)

$$\Delta \rho_{\alpha\beta} = -\frac{Ma}{\gamma ne} \frac{\partial \mathbf{\Omega}}{\partial x_{\alpha}} \cdot \left(\mathbf{\Omega} \times \frac{\partial \mathbf{\Omega}}{\partial x_{\beta}} \right) + \frac{Ma'}{\gamma ne} \frac{\partial \mathbf{\Omega}}{\partial x_{\alpha}} \cdot \frac{\partial \mathbf{\Omega}}{\partial x_{\beta}} + \frac{Mb}{\gamma ne} \left(\hat{z} \times \frac{\partial \mathbf{\Omega}}{\partial x_{\beta}} \right)_{\alpha} - \frac{Mb'}{\gamma ne} \left[\hat{z} \times \left(\frac{\partial \mathbf{\Omega}}{\partial x_{\beta}} \times \mathbf{\Omega} \right) \right]_{\alpha}.$$

Texture+SO coupling induced Hall contribution

Texture+SO coupling induced contribution

Current generation of PMA (domain wall materials):

$$a=a'=b=0$$
 [Beach's experiments]

Discussion

- □ Skyrmions attractive for controlled study of current-magnetization interaction [extra info via charging effects; cf. Bamler et al. (2013)]
- □ Are skyrmions more attractive then domain walls? (electrical detection, nucleation, speed, stability, interactions...?)
- \square What are the best materials for room T skyrmions?