Spin motive force in the presence of spin-orbit interaction

Gen TATARA, N. Nakabayashi⁺, A. Takeuchi*

RIKEN Center for Emergent Matter Science (CEMS)
+Tokyo Metropolitan University
* The Talue University

Collaborators:

N. Nakabayashi (Tokyo Metropolitan Univ.), Y. Sasaki (TMU) A. Takeuchi (Tokyo Univ.), K. Taguchi (Nagoya Univ.), H. Ueda (OIST, Okinawa)

K.-J. Lee (Korea Univ.)

Electromagnetism for charge and spin

Electromagnetism

$$abla imes E + \dot{B} = 0$$

$$abla imes B = \mu j + \epsilon \mu \dot{E}$$

$$j_{\mathbf{Hall}} = \sigma_{\mathbf{H}}(E \times B)$$

• Spin electromagnetism Ferromagnetic metals

Volovik'87

- Drives conduction electron spin
- sd exchange interaction

$$egin{aligned}
abla imes E_{ extbf{s}} + \dot{B_{ extbf{s}}} &= 0 \
abla imes B_{ extbf{s}} &= \mu_{ extbf{s}} j + \epsilon_{ extbf{s}} \mu_{ extbf{s}} \dot{E}_{ extbf{s}} \ j_{ extbf{Hall}} &= \sigma_{ extbf{SH}} (E imes B_{ extbf{s}}) \end{aligned}$$

- ullet $E_{\mathbf{s}}$: Spin motive force, $B_{\mathbf{s}}$: Spin Berry's phase Berger'86, Stern'92, Barnes & Maekawa'07
- Real field Detectable by electric measurements

$$j_{
m s} = P j$$
 in ferromagnetic metals $P \sim O(1)$

Spin electromagnetic field

ullet $E_{
m s}$ from motion of domain wall, vortex $V\sim \mu {
m V} \propto E_{
m s} \propto v_{
m dw}$

• Skyrmion lattice $ho_{xy} \sim 4 n\Omega \text{cm} \propto B_{s}$

Topological Hall effect B_s

Voltage , $E_{
m s} \propto v_{
m skym}$ Schulz'12

Yu'10

Neubauer'09

Spin electromagnetic field

Volovik'87, Stern'92, Barnes&Maekawa'07

Adiabatic limit

- Electron spin rotation
- \Rightarrow Phase $e^{i\varphi}$

$$oxed{arphi = \int_C \!\! dr \cdot A_{ extsf{S}}}$$

$$A_{\rm s} = \frac{1}{2}(1-\cos\theta)\partial\phi$$

• Spin magnetic field

$$arphi = \int_S \!\! dS \cdot B_{f s}$$

• Faraday's law is satisfied

• Spin electric field (dynamics)

$$\dot{arphi} = -\int_C\!\!dr\cdot E_{f s}$$

$$abla imes E_{\mathbf{s}} = -rac{\partial B_{\mathbf{s}}}{\partial t}$$

Electromagnetic field coupled to spin

Topological spin electromagnetic field (Adiabatic limit)

• Effective U(1) gauge field Adiabatic limit

$$A^z_{{f s},\mu}=rac{1}{2}(1-\cos heta)\partial_{\mu}\phi$$

Spin electromagnetic fields

$$egin{aligned} E_{\mathbf{s},i} &= -
abla_i A^z_{\mathbf{s},0} + \partial_t A^z_{\mathbf{s},i} = -rac{1}{2} n \cdot (\dot{n} imes
abla_i n) \ B_{\mathbf{s},i} &= (
abla imes A^z_{\mathbf{s}})_i = rac{1}{4} \sum_{jk} \epsilon_{ijk} n \cdot (
abla_j n imes
abla_k n) \end{aligned}$$

 B_s : Spin Berry's phase E_s : Spin motive force

 $E_{\rm S}$ and $B_{\rm S}$ couple spin structure and electron transport

Effects of spin-orbit interaction

- Inverse (and direct) spin Hall effects
 - Spin-orbit \Rightarrow No longer in the adiabatic limit
 - Spin relaxation effects
- ullet Spin relaxation effects on $E_{\mathbf{s}}$
 - Spin relaxation β

Duine PRB'08

$$n\cdot(\dot{n} imes
abla_i n)\Rightarroweta n\cdot(\dot{n} imes(n imes
abla_i n))=eta(\dot{n}
abla_i n)$$

Onsager relation

Saslow PRB'07, Tserkovnyak PRB'08

- Rashba effects
 - Weak sd Transport (Diagrams)

Takeuchi> J.Phys.Soc.Jpn'12

• Strong sd "Chiral derivative"

Kim PRĽ12

• Strong sd Transport (Diagrams) GT PRB'13, Nakabayashi>'13

ullet Strong sd coupling Δ_{sd} + Rashba interaction α_R

$$H = \int d^3r c^\dagger \left[\left(\frac{\hbar^2}{2m} \nabla^2 + \epsilon_F \right) + \Delta_{\rm sd} \left(n \cdot \sigma \right) - \frac{i}{2} \, \alpha_{\rm R} \cdot \left(\stackrel{\leftrightarrow}{\nabla} \times \sigma \right) \right] c$$

• Diagram calculation

Nakabayashi>,arXiv:1308.0152

- Result
 - Electromagnetic field description works

Linear order of $lpha_{
m R}$

$$egin{aligned}
abla imes E_{
m R} + \dot{B}_{
m R} &= 0 \
abla imes B_{
m R} - \epsilon_{
m R} \mu_{
m R} \dot{E}_{
m R} &= \mu_{
m R} j \
onumber \ j_{
m Hall} &= \sigma_{
m R} (E imes B_{
m R}) \end{aligned}$$

$$egin{aligned} E_{\mathbf{R}} &= -rac{m}{e\hbar}(lpha_{\mathbf{R}} imes \dot{n}) \ B_{\mathbf{R}} &= rac{m}{e\hbar}[
abla imes (lpha_{\mathbf{R}} imes n)] \end{aligned}$$

• Spin vector potential Linear order

$$A_{\mathbf{R}} = -\frac{m}{e^{\hbar}}(\alpha_{\mathbf{R}} \times n)$$

Kim'12, Nakabayashi>,arXiv

Total effective electromagnetic field

- Ferromagnetic metals
- Charge + Spin electromagnetic fields

$$E_{ ext{eff}} = E + E_{ ext{s}}, \qquad E_{ ext{s}} = E_{ ext{s,top}} + E_{ ext{R}} \ B_{ ext{eff}} = B + B_{ ext{s}}, \qquad B_{ ext{s}} = B_{ ext{s,top}} + B_{ ext{R}}$$

Ampère's law

Total effective electromagnetic field

- Ferromagnetic metals
- Charge + Spin electromagnetic fields

$$E_{ ext{eff}} = E + E_{ ext{s}}, \hspace{1cm} E_{ ext{s}} = E_{ ext{s,top}} + E_{ ext{R}} \ B_{ ext{eff}} = B + B_{ ext{s}}, \hspace{1cm} B_{ ext{s}} = B_{ ext{s,top}} + B_{ ext{R}}$$

Ampère's law

$$\begin{split} \bullet \ \, \nabla \times (B+B_{\rm S}) - \frac{\partial}{\partial t} \left(\epsilon \mu E + \epsilon_{\rm S} \mu_{\rm S} E_{\rm S} \right) &= \mu j \\ \bullet \ \, \boxed{ \nabla \times B - \epsilon \mu \frac{\partial E}{\partial t} = \mu (j+j^{\rm (SEMF)}) } \\ j^{\rm (SEMF)} &\equiv -\frac{1}{\mu} \left(\nabla \times B_{\rm S} - \epsilon_{\rm S} \mu_{\rm S} \frac{\partial E_{\rm S}}{\partial t} \right) \\ &= -\frac{1}{\mu} (\nabla \times B_{\rm S}) + \sigma_{\rm S} E_{\rm S} \end{split}$$
 $(\omega \tau \ll 1)$

Electric current induced by spin electromagnetic field

Rashba-induced current

$$egin{aligned} j^{(extbf{SEMF})} &= -rac{1}{\mu}(
abla imes B_{ extbf{R}}) + \sigma_{ extbf{S}}E_{ extbf{R}} \ &= -rac{1}{\mu}(
abla imes (
abla imes (lpha_{ extbf{R}} imes n))) + rac{m}{e\hbar}\sigma_{ extbf{S}}(lpha_{ extbf{R}} imes \dot{n}) \end{aligned}$$

- Dynamic part
 - Spin pumping + Inverse spin Hall by Rashba (?)

$$j_x = \alpha_{\mathbf{R}} j_{\mathbf{s},z}^y, j_{\mathbf{s},z} \propto \dot{n}$$

- Rashba interaction
- Uniform system (Rashba and *sd* coexist)

Junction is argued by including electron diffusion

- Where is essential spin pumping contribution?
 - Include spin relaxation

$$m{E_{
m R}} = rac{m}{e\hbar} \left[(lpha_{
m R} imes \dot{m{n}}) + eta_{
m R} [lpha_{
m R} imes (n imes \dot{m{n}})]
ight] \ eta_{
m R} {
m Spin \ relaxation \ rate}$$

$$j^{(extsf{SEMF})} = -rac{\psi}{\mu e \hbar} \sigma_{ extsf{s}} lpha_{ extbf{R}} imes [\dot{n} + eta_{ extbf{R}} (n imes \dot{n})]$$

• Looks more like Spin pumping + Inverse spin Hall

$$j_{\mathbf{s},z} = g_{\uparrow\downarrow}(n imes\dot{n}) + g_{\uparrow\downarrow}'\dot{n} \qquad g_{\uparrow\downarrow} \simeq rac{m}{\mu e \hbar} \sigma_{\mathbf{s}} eta_{\mathbf{R}}$$

No undefined quantity

- Where is essential spin pumping contribution?
 - Include spin relaxation

$$E_{\mathbf{R}} = rac{m}{e\hbar} \left[(lpha_{\mathbf{R}} imes \dot{n}) + eta_{\mathbf{R}} [lpha_{\mathbf{R}} imes (n imes \dot{n})]
ight]$$
 $eta_{\mathbf{R}}$ Spin relaxation rate

$$egin{aligned} rac{\psi}{j^{(extsf{SEMF})} = -rac{m}{\mu e \hbar} \sigma_{ extsf{s}} lpha_{ extsf{R}} imes [\dot{n} + eta_{ extsf{R}} (n imes \dot{n})] \end{aligned}$$

• Looks more like Spin pumping + Inverse spin Hall

$$j_{{f s},z} = g_{\uparrow\downarrow}(n imes\dot{n}) + g'_{\uparrow\downarrow}\dot{n} \qquad g_{\uparrow\downarrow} \simeq rac{m}{\mu e\hbar}\sigma_{f s}eta_{f R}$$

No undefined quantity

• Rashba-induced spin electric field

$$egin{aligned} E_{ extbf{R}} &= rac{m}{e\hbar} \left[(lpha_{ extbf{R}} imes \dot{n}) + eta_{ extbf{R}} [lpha_{ extbf{R}} imes (n imes \dot{n})]
ight] \ & iggrup \ & iggrap \times E_{ extbf{S}} + \dot{B}_{ extbf{S}} = j_{ extbf{m}}
eq 0 \end{aligned}$$

• Emergence of spin damping monopole from spin relaxation

Takeuchi, J. Phys.Soc.Japan '12

$$j_{\mathbf{m}} = eta_{\mathbf{R}}
abla imes (lpha_{\mathbf{R}} imes N)$$
 $N \equiv n imes \dot{n}$: Spin damping vector

- Non-conservation of spin (dissipation) ⇒ Monopole (?)
- No topological meaning (?)
- But is physical

$$\boxed{n imes \dot{n}} \Rightarrow j_{\mathbf{m}} \Rightarrow
abla imes E_{\mathbf{R}} = j_{\mathbf{m}} \Rightarrow \boxed{E}$$

Monopole current converts spin damping to electric voltage

Summary

- Strong sd + Rashba spin-orbit system
- Effective electromagnetic field description
 - Beautiful Physicists' job is to seek beauty ..?
 - No undefined parameters
 - More works necessary (junction, diffusion)

Post docs, good students

Summary

- ullet Strong sd + Rashba spin-orbit system
- Effective electromagnetic field description
 - Beautiful Physicists' job is to seek beauty ..?
 - No undefined parameters
 - More works necessary (junction, diffusion)

Post docs, good students

Summary

- Strong sd + Rashba spin-orbit system
- Effective electromagnetic field description
 - Beautiful Physicists' job is to seek beauty ..?
 - No undefined parameters
 - More works necessary (junction, diffusion)
 Post docs, good students

RIKEN positions

Postdoc/researcher positions available in Spin Physics Theory Group

gen.tatara@riken.jp

- Positions offered by RIKEN http://www.riken.jp/en/careers/programs/
 - Postdocs, Graduate school students (PhD candidates)

