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ANGULAR MOMENTUM

The total angular momentum of a physical system must be 
conserved due to the isotropicity of space:

J = const ) dL

dt
+

dS

dt
= 0



ACTION FOR A FREE PARTICLE
The classical phase-space action for a point-like particle:

The corresponding total angular momentum:
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FIG. 1. (Color online) Geometric representation of the tensors in
Eq. (17), expressed in terms of the tangent vectors to the sphere,
∂I m = ∂I θ θ̂ + ∂Iϕ sin θ ϕ̂. The tensors GIJ = ∂im · ∂j m and FIJ =
m · (∂im × ∂j m) geometrically represent the spin space metric and
the area spanned by the tangent vectors, respectively.

We will be interested in quasiparticle transport on the
semiclassical spin-orbit bands defined by the eigenvalues of
Eq. (12),

εps(r,t) = 1
2

[εp(r,t) + s%p(r,t)] , (13)

where s = ±1. The local spin frame that diagonalizes Eq. (12)
is defined by an SU(2) rotation Ûp(r,t) such that

Û †
p(%p · τ̂ )Ûp = %pτ̂z , (14)

and the covariant derivatives in Eq. (11) may be written as

DIM̂ = 1
2∂IM + DI M · τ̂ , (15)

where DI M ≡ ∂I M + AI × M and the vector-valued gauge
fields are defined by ÂI ≡ iÛ

†
p∂I Ûp ≡ AI · τ̂ = A+

I τ̂+ +
A−

I τ̂− + Az
I τ̂z, where A±

I = Ax
I ∓ iA

y
I and τ̂± ≡ (τ̂x ± iτ̂y)/2.

In the Euler-angle parametrization of our local spin frame,
Û (ϕ,θ,γ ) = e−iϕτ̂z e−iθ τ̂y e−iγ τ̂z , the gauge fields are

Az
I = cos θ∂Iϕ + ∂Iγ ,

(16)
A±

I = −e±iγ (sin θ∂Iϕ ± i∂I θ ) ,

where γ is an arbitrary rotation angle about mp(r,t) and
hence a local gauge parameter. The form of Az

I reflects the
north/south pole singularity in the spherical coordinate system,
where ϕ is not well defined. Near the poles, we may choose
a gauge in which γ = ∓ϕ, which renders the gauge fields
well behaved either at the north or south poles (θ = 0 or π ),
respectively, but not both. It is thus necessary to use different
gauges locally in regions where the texture passes through both
north and south poles. We emphasize that such singularities
have a purely mathematical origin arising from our choice
of coordinate system, and may occur where the texture is
perfectly smooth.

The product of the transverse components in Eq. (16) is a
gauge-invariant second-rank tensor:

A+
I A−

J = sin2 θ∂Iϕ∂J ϕ + ∂I θ∂J θ

+i sin θ (∂I θ∂J ϕ − ∂Iϕ∂J θ )

≡ GIJ + iFIJ . (17)

The real partGIJ is a kind of metric in spin space, which will
not appear in the final results of this paper.23 Fig. 1 illustrates
the geometric meaning of these tensors.

xI(t) M Ω

FIG. 2. (Color online) Illustration of adiabatic transport around
a loop ∂M which is the boundary of a hypersurface M in the 7-
dimensional phase space plus time (left). Spin s particles acquire
a Berry phase in spin space (right). eiqs), where qs = −s/2 and
) =

∮
∂M

dxIAI =
∫

M
FJKdxJ ∧ dxK = */2.

By gauge invariance, only the Berry curvature, i.e., the curl
of the Berry gauge field AI ≡ −Az

I , appears in any physical
quantities,

FIJ ≡ Im A+
I A−

J = Ax
I A

y
J − A

y
I A

x
J = ∂IAJ − ∂JAI . (18)

In the rest of the paper, where necessary, we will denote the
Berry gauge fields by A±

I = −(cos θp ∓ 1)∂Iϕp when well
defined on the north/south pole, respectively. Geometrically,
the Berry curvature gives the solid angle * spanned by the spin
texture mp(r,t) per area in the (xI ,xJ ) plane. Nonvanishing
Berry curvature means that particles acquire a phase-space
Berry phase (s/2)

∮
dxIAI ≡ s*/2 over a closed trajectory,

which modifies their transport (see Fig. 2). All the phenomena
we will investigate in this paper may be traced back to this
phase.

Equation (9) may be viewed as an expansion of Eq. (3)
in powers of h̄. However, the separation into its classical
O(h̄0) and quantum O(h̄) part is not manifest because
of its matrix structure, which represents the dynamics of
quantum-mechanical internal degrees of freedom. In the next
section, we will derive a kinetic equation for the distribution
function projected on each band defined by Eq. (13), which
systematically captures all O(h̄) quantum corrections to the
classical Boltzmann equation.

B. Decoupling

The diagonal part of kinetic Eq. (9) reads

∂t nps + ∂ iεps∂inps + Fps(∂i ,Ai ; εs ,ns,ñ) = 0 , (19)

where Fps are the O(h̄), “anomalous” terms in the Boltzmann
equation. We denote transverse (i.e., x,y) vector components
of the distribution (in the local frame) by ñ. In the formulas
throughout this paper, the partial derivatives ∂i acts only on
the symbol to its immediate right, so that in expressions of the
form ∂iA∂jB, ∂i acts on A only. At this point, the anomalous
terms, which are shown explicitly in Eqs. (D2) and (D3) of
Appendix D, may not appear manifestly gauge invariant (while
they certainly should be).2 Let us now decouple the longitudi-
nal and transverse components in an adiabatic approximation,
which will result in a closed, gauge-invariant equation for
the diagonal distribution functions. The decoupling procedure
may be organized in the following way. Suppose that we can
solve the transverse components in terms of the longitudinal
in a gradient expansion to the (p − 1)th order in space-time
derivatives: ñ = ñ(0) + ñ(1) + . . . + ñ(p−1). By substituting ñ
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QUANTUM DESCRIPTION
Such Lagrangian formulation can be readily extended to the 
quantum limit (appropriate for, e.g., molecular magnets or 
individual quasiparticles that carry a small spin), as follows:

The quantum-mechanical propagator (Green’s function) is 
obtained by an appropriate path integral:

over all possible trajectories in phase+spin space,

G =

Z
D[q(t)]e

i
~S[q(t)]

q ⌘ (p, r,n)

�S = 0



LOCALIZED SPIN DYNAMICS
As a starting point (which also reflects historical development of 
the theory of magnetic dynamics), consider a localized collective 
spin variable                     :

(Note: Can follow a classical treatment, so long as            )

Minimizing action,              , we obtain Larmor precession:

                                            where

�S = 0

S � ~

S
dn

dt
= H⇥ n

S[n(t)] = �S

Z
d�(1� cos ✓)�

Z
dtH(n)

S(t) = Sn(t)

H ⌘ dH
dn

dynamicgeometric



MAGNETIC CONTINUUM
Well below the Curie temperature Tc , the local spin density in a 
ferromagnet can be approximated to be fully saturated, i.e.,

                                            where

while the spatial structure may exhibit directional inhomogeneity

We will henceforth call it spin texture:

At a finite (but still low, compared to Tc) temperature, the free-
energy density is given by a nonlinear σ model:

|n(r, t)| ⌘ 1s(r, t) = sn(r, t)

F [n(r)] = H · n+

A

2

(rn)2 + (relativistic corrections)

dipolar interactions, crystalline anisotropies, DMI



LANDAU-LIFSHITZ EQUATION
The Larmor precession is generalized as follows:

where

in the exchange approximation (i.e., neglecting relativistic effects)

We can put it together as:

                                           where

s
dn

dt
= He↵ ⇥ n

He↵ ⌘ �F

�n
= H�Ar2n

s
dn

dt
= H⇥ n�riji

we interpret this as the
spin current carried by magnons

spin continuity equation
with local precession

ji = Arin⇥ n



SPIN TRANSFER TORQUE
In metals, furthermore, there is a torque associated with the spin 
current carried by itinerant electrons:

This produces a new term in the equation of motion:

ji = Arin⇥ n� P
~
2e

nji
magnon

spin current
electron

spin current

P = 10 < P < 1
normal metal ferromagnet halfmetal

s
dn

dt
= (LL terms) + P

~
2e

(j ·r)n

P = 0

Volovik, JPC (1987)

τ



GILBERT DAMPING
The ferromagnetic damping is most naturally introduced as an 
exponential spiraling down of magnetic precession:

Typically    is isotropic (i.e., is a scalar) and independent of

s(1 + ↵n⇥)
dn

dt
= He↵ ⇥ n

GILBERT: PHENOMENOLOGICAL THEORY OF DAMPING IN FERROMAGNETIC MATERIALS 3449
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contrast this to the Bloch phenomenology, where the quality factor 
of transverse precession, ~HT2, increases with the applied field H

Gilbert, IEEEM (2004)



ENERGY DISSIPATION
The rate of energy dissipation according to the LLG equation:

    must thus generally be a positive-definite matrix

This expression is an instance of the Rayleigh dissipation functional

According to a fundamental principle of thermodynamics, the 
dissipation in a driven system suggests the presence of fluctuations 
in thermal equilibrium

P ⌘ �dF

dt
=�

Z
dV

�F

�n
· dn
dt

= �
Z

dV He↵ · dn
dt

=↵s

Z
dV

dn

dt
· dn
dt

! s

Z
dV

dn

dt
· ↵̂ · dn

dt
scalar damping tensorial damping

↵̂



In general, inverting the LLG equation as

we have for the stochastic Langevin field

In case of isotropic Gilbert damping, the full finite-temperature 
LLG equation thus reads

FLUCTUATION-DISSIPATION THEOREM

s(1 + ↵n⇥)
dn

dt
= (He↵ + h)⇥ n

hhi(t)hj(t
0)i = kBT (�ij + �ji)�(t� t0)

Brown, PR (1963)

He↵

✓
⌘ �F

�n

◆
= ��̂

dn

dt

Landau & Lifshitz, vol. 5

hhi(t)hj(t
0)i = 2↵skBT �(t� t0)



SPIN SEEBECK EFFECT

(Longitudinal) spin Seebeck effect

Uchida et al. (2010/2011)
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mm!, and 1 mm "15 nm!, respectively. An external magnetic
field H was applied in the x-y plane at an angle ! to the x
direction #see Fig. 1"b!$. A temperature gradient !T was ap-
plied along the +z "downward! direction by generating a
temperature difference "T between the top and the bottom of
the YIG/Pt sample; the sample was sandwiched between two
heat baths of which the temperatures were stabilized to 300
K and 300 K+"T #see Fig. 1"c!$. In this setup, we measured
the electric voltage difference V between the ends of the Pt
wire. Here we note that, if ferromagnetic metallic slabs are
used as the F layer, the ISHE signal not only is suppressed
significantly by short-circuit currents in the F layer due to the
electric conduction of F but also is overlapped with the sig-
nal of the anomalous Nernst–Ettingshausen effect19 in F. In
this longitudinal configuration, by using a spin-Seebeck in-
sulator such as YIG, we overcome these artifacts.11

Figure 2"a! shows V as a function of the temperature
difference "T at H=1 kOe. When a magnetic field is applied
along the y direction "!=90°!, the magnitude of V is ob-
served to be proportional to "T. This V signal disappears
when the magnetic field is applied along the x direction "!
=0!, a situation consistent with Eq. "1!. As shown in the inset
to Fig. 2"a!, the sign of the V signal at finite values of "T is
clearly reversed by reversing the !T direction. This result
indicates that the observed signal is attributed to the longitu-
dinal SSE, on the basis that the direction of the thermally
generated spin current at the YIG/Pt interface is reversed by
reversing !T. We also confirmed that the sign of V is re-
versed by reversing H when !=90° and %H%#500 Oe #see
Fig. 2"b!$. This sign reversal is consistent with the aforemen-
tioned prediction of the ISHE induced by the longitudinal
SSE #see Eq. "1!$.

The V signal in Fig. 2 indicates that the sign of the spin
current generated by the longitudinal SSE at the YIG/Pt in-
terface is opposite to that by the conventional SSE previ-
ously reported in similar films.11 We interpret this result in

the following way. First, recall that the SSE in insulator/
metal systems can be understood in terms of the imbalance
between an effective magnon temperature Tm

! in the F "YIG!
layer and an effective conduction-electron temperature Te

! in
the attached N "Pt! layer, since we can relate thermal fluc-
tuation in each element to its effective temperature through
the fluctuation-dissipation theorem.20–22 The former fluctua-
tion injects spins into N, while the latter ejects spins from N.
Then, the sign reversal between the longitudinal and conven-
tional SSE signals may be explained as follows under the
conditions; "i! most of the heat currents in the YIG/Pt system
at 300 K are carried by phonons,23 and "ii! the electron-
phonon interaction He−p in Pt is much stronger than the
magnon-phonon interaction Hm−p in YIG.24 In the longitudi-
nal SSE setup, the Pt layer has a direct contact to the heat
bath, thereby being exposed to the phonon heat currents due
to the condition "i! #see Figs. 1"b! and 1"c!$. Then, because
of the condition "ii!, conduction electrons in Pt is heated up
faster than magnons in YIG, and the resultant Te

! in Pt is
higher than Tm

! in YIG at the YIG/Pt interface. In the con-
ventional SSE setup, by contrast, the N wires are out of
contact to the heat baths and the phonon heat current does
not flow through N, while the F layer has a contact to the
heat baths, resulting in an increase in Tm

! in the lower-
temperature region of F #see Fig. 1"a!$. Therefore, in this
region, Te

! in N is lower than Tm
! in F.25 This difference can

be the origin of the sign reversal of the SSE signals between
the longitudinal and conventional setups.

Up to now, we have discussed the longitudinal SSE sig-
nal under the condition that the magnetization of YIG is
saturated. Finally, we move the discussion to the V signal
behavior in a low-magnetic-field range. In Fig. 3"a!, we com-
pare the H dependence of V in the present YIG/Pt sample
and the magnetization M curve of the YIG slab. In the range
of %H%$300 Oe, the V-H curve deviates from the M-H one;
a clear threshold appears in the V-H curve at %H%=300 Oe.
The H dependence of dV /dH in Fig. 3"b! and the M depen-
dence of V in Fig. 3"c! also indicate the existence of this
threshold magnetic field in the longitudinal SSE signal of the
YIG/Pt system. The threshold may be explained by the scat-
tering of magnons by domain walls in the low-magnetic-field
range, which suppresses the SSE signal.21,22 Detailed inves-
tigations on this threshold left to be done in further studies
but here we can emphasize that the mismatch between M and
V can be evidence that the Pt layer is not magnetized by
proximity effects near the YIG/Pt interface.

In summary, we have measured, using a YIG/Pt system,
a spin current generated in the Pt film along the temperature
gradient: the longitudinal SSE, by means of the ISHE in Pt.
We found that the sign of the thermally generated spin volt-
age at the YIG/Pt interface is opposite between the longitu-
dinal and conventional setups and that the ISHE voltage in-
duced by the longitudinal SSE in the present YIG/Pt system
is suppressed below 300 Oe. Since the longitudinal SSE re-
quires only simple and versatile systems, it will extend the
range of device application and experimental investigation of
the SSE.

The authors thank G. E. W. Bauer, J. Xiao, S. Takahashi,
J. Ohe, J. Ieda, A. Kirihara, B. J. van Wees, and J. Sinova for
valuable discussions. This work was supported by a Grant-
in-Aid for Scientific Research in Priority Area “Creation
and Control of Spin Current” "Grant Nos. 19048009 and
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FIG. 2. "Color online! "a! "T dependence of V between the ends of the Pt
wire at H=1 kOe, measured when a temperature gradient !T is applied
along the +z direction. Inset to "a! shows the "T dependence of V, measured
when !T is along the −z direction. The magnetic field H was applied along
the y direction "!=90°! or the x direction "!=0!. "b! H dependence of V
between the ends of the Pt wire at !=90° for various values of "T, mea-
sured when !T is along the +z direction.
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LETTERS

Observation of the spin Seebeck effect
K. Uchida1, S. Takahashi2,3, K. Harii1, J. Ieda2,3, W. Koshibae4, K. Ando1, S. Maekawa2,3 & E. Saitoh1,5

The generation of electric voltage by placing a conductor in a
temperature gradient is called the Seebeck effect1,2. Its efficiency
is represented by the Seebeck coefficient, S, which is defined as the
ratio of the generated electric voltage to the temperature differ-
ence, and is determined by the scattering rate and the density of
the conduction electrons. The effect can be exploited, for example,
in thermal electric-power generators and for temperature sensing,
by connecting two conductors with different Seebeck coefficients,
a device called a thermocouple1,2. Here we report the observation
of the thermal generation of driving power, or voltage, for electron
spin: the spin Seebeck effect. Using a recently developed spin-
detection technique that involves the spin Hall effect3–14, we mea-
sure the spin voltage generated from a temperature gradient in a
metallic magnet. This thermally induced spin voltage persists even
at distances far from the sample ends, and spins can be extracted
from every position on the magnet simply by attaching a metal.
The spin Seebeck effect observed here is directly applicable to the
production of spin-voltage generators, which are crucial for driv-
ing spintronic15–18 devices. The spin Seebeck effect allows us to
pass a pure spin current19, a flow of electron spins without electric
currents, over a long distance. These innovative capabilities will
invigorate spintronics research.

The spin Seebeck effect refers to the generation of spin ‘voltage’ as a
result of a temperature gradient. We define spin voltage as the spin-
current potential, which is represented by m"2 m#, where m" and m#
respectively denote the electrochemical potentials for spin-up and
spin-down electrons14,20; a gradient in the spin voltage drives a spin
current. In a metallic magnet, spin-up and spin-down conduction
electrons notably have different scattering rates and densities16, and
thus have different Seebeck coefficients, as if two conductors with
different S values were inherently present in one magnet (Fig. 1b).
When a metallic magnet is subjected to a temperature gradient,
therefore, it should generate different driving powers of electrons
in different spin channels along the temperature gradient21–24. This
is the proposed scenario for the spin Seebeck effect: in the spin sector,
a magnet works in the same way as a thermocouple (Fig. 1a, b). This
driving power of electrons generates differing amounts of flow in the
two spin channels, that is, a spin current. To be more specific, we
consider a magnet with uniform magnetization subject to a uniform
temperature gradient. In this case, and when the length of the magnet
along the temperature gradient is much greater than the spin-
diffusion length25 of the magnet, the above scenario and thermody-
namic arguments26 predict the spatial distribution of m" and m# along
the temperature gradient shown in Fig. 2a.

However, this spin Seebeck effect remains to be observed. The
recently discovered inverse-spin-Hall effect10–14 (ISHE) is a powerful
tool for detecting spin voltage, and we use it to investigate the spin
Seebeck effect in the present study. The ISHE converts a spin current
into an electromotive force ESHE by means of spin–orbit scattering. A
spin current carries a spin-polarization vector s along a spatial

direction JS. The relation between ESHE, JS and s is given by the
following vector product:

ESHE~DISHEJS|s ð1Þ
The ISHE efficiency DISHE is enhanced in noble metals, such as Pt. By
measuring ESHE, the ISHE can be used to detect a spin current10–14.

Figure 2b shows an illustration of the sample system used in the
present study. The sample consists of a 20-nm-thick, soft ferromag-
netic Ni81Fe19 film with a Pt wire attached to one end. The Ni81Fe19

layer was deposited on a sapphire substrate by electron-beam eva-
poration in a high vacuum, and the Pt layer was then sputtered in
an Ar atmosphere. Immediately before the sputtering, the surface of
the Ni81Fe19 layer was cleaned by Ar ion etching. The length, the width
and the thickness of the Pt wire are respectively LPt 5 4 mm, 100mm,
and dPt 5 10 nm. We apply an in-plane external magnetic field, H,
along the x direction (Fig. 2d), except when collecting a set of angle-
dependent data (discussed below). The coercive force, HC, of the
Ni81Fe19 layer is around 15 Oe at 300 K, and the magnetization is
aligned along the external magnetic field direction when jHj. HC.
A temperature gradient =T is applied along the x direction by generat-
ing a temperature difference DT between the ends of the layer. Owing
to the direction of the temperature gradient (parallel or antiparallel to
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Figure 1 | The spin Seebeck effect. a, Illustration of a thermocouple. A
thermocouple consists of two conductors (metals A and B) connected to
each other. They have different Seebeck coefficients and, thus, the voltage V
between the output terminals is proportional to the temperature difference
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appears; a magnet functions just like a thermocouple, but in the spin sector.
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Observation of the spin Seebeck effect
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The generation of electric voltage by placing a conductor in a
temperature gradient is called the Seebeck effect1,2. Its efficiency
is represented by the Seebeck coefficient, S, which is defined as the
ratio of the generated electric voltage to the temperature differ-
ence, and is determined by the scattering rate and the density of
the conduction electrons. The effect can be exploited, for example,
in thermal electric-power generators and for temperature sensing,
by connecting two conductors with different Seebeck coefficients,
a device called a thermocouple1,2. Here we report the observation
of the thermal generation of driving power, or voltage, for electron
spin: the spin Seebeck effect. Using a recently developed spin-
detection technique that involves the spin Hall effect3–14, we mea-
sure the spin voltage generated from a temperature gradient in a
metallic magnet. This thermally induced spin voltage persists even
at distances far from the sample ends, and spins can be extracted
from every position on the magnet simply by attaching a metal.
The spin Seebeck effect observed here is directly applicable to the
production of spin-voltage generators, which are crucial for driv-
ing spintronic15–18 devices. The spin Seebeck effect allows us to
pass a pure spin current19, a flow of electron spins without electric
currents, over a long distance. These innovative capabilities will
invigorate spintronics research.

The spin Seebeck effect refers to the generation of spin ‘voltage’ as a
result of a temperature gradient. We define spin voltage as the spin-
current potential, which is represented by m"2 m#, where m" and m#
respectively denote the electrochemical potentials for spin-up and
spin-down electrons14,20; a gradient in the spin voltage drives a spin
current. In a metallic magnet, spin-up and spin-down conduction
electrons notably have different scattering rates and densities16, and
thus have different Seebeck coefficients, as if two conductors with
different S values were inherently present in one magnet (Fig. 1b).
When a metallic magnet is subjected to a temperature gradient,
therefore, it should generate different driving powers of electrons
in different spin channels along the temperature gradient21–24. This
is the proposed scenario for the spin Seebeck effect: in the spin sector,
a magnet works in the same way as a thermocouple (Fig. 1a, b). This
driving power of electrons generates differing amounts of flow in the
two spin channels, that is, a spin current. To be more specific, we
consider a magnet with uniform magnetization subject to a uniform
temperature gradient. In this case, and when the length of the magnet
along the temperature gradient is much greater than the spin-
diffusion length25 of the magnet, the above scenario and thermody-
namic arguments26 predict the spatial distribution of m" and m# along
the temperature gradient shown in Fig. 2a.

However, this spin Seebeck effect remains to be observed. The
recently discovered inverse-spin-Hall effect10–14 (ISHE) is a powerful
tool for detecting spin voltage, and we use it to investigate the spin
Seebeck effect in the present study. The ISHE converts a spin current
into an electromotive force ESHE by means of spin–orbit scattering. A
spin current carries a spin-polarization vector s along a spatial

direction JS. The relation between ESHE, JS and s is given by the
following vector product:

ESHE~DISHEJS|s ð1Þ
The ISHE efficiency DISHE is enhanced in noble metals, such as Pt. By
measuring ESHE, the ISHE can be used to detect a spin current10–14.

Figure 2b shows an illustration of the sample system used in the
present study. The sample consists of a 20-nm-thick, soft ferromag-
netic Ni81Fe19 film with a Pt wire attached to one end. The Ni81Fe19

layer was deposited on a sapphire substrate by electron-beam eva-
poration in a high vacuum, and the Pt layer was then sputtered in
an Ar atmosphere. Immediately before the sputtering, the surface of
the Ni81Fe19 layer was cleaned by Ar ion etching. The length, the width
and the thickness of the Pt wire are respectively LPt 5 4 mm, 100mm,
and dPt 5 10 nm. We apply an in-plane external magnetic field, H,
along the x direction (Fig. 2d), except when collecting a set of angle-
dependent data (discussed below). The coercive force, HC, of the
Ni81Fe19 layer is around 15 Oe at 300 K, and the magnetization is
aligned along the external magnetic field direction when jHj. HC.
A temperature gradient =T is applied along the x direction by generat-
ing a temperature difference DT between the ends of the layer. Owing
to the direction of the temperature gradient (parallel or antiparallel to

1Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan. 2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
3CREST, Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan. 4Cross-Correlated Materials Research Group, RIKEN, Wako, Saitama 351-0198, Japan. 5PRESTO,
Japan Science and Technology Agency, Sanbancho, Tokyo 102-0075, Japan.

V

Spin Seebeck effect

Metallic magnet

b

T2

T1

a Thermocouple Metal A

Metal B

∇T

E

E

T2

T1

∇T

m↑ – m↓

Figure 1 | The spin Seebeck effect. a, Illustration of a thermocouple. A
thermocouple consists of two conductors (metals A and B) connected to
each other. They have different Seebeck coefficients and, thus, the voltage V
between the output terminals is proportional to the temperature difference
T1 2 T2 between the ends of the couple. b, Illustration of the spin Seebeck
effect. In a metallic magnet, spin-up (") and spin-down (#) conduction
electrons have different Seebeck coefficients. When a temperature gradient is
applied, a spin voltage m"2 m# proportional to the temperature difference
appears; a magnet functions just like a thermocouple, but in the spin sector.
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DISSIPATIVE SPIN TORQUE
Gilbert damping transfers angular momentum from the magnetic 
subsystem to the crystal that supports it as is the case in the 

Einstein-de Haas effect:

This means that the spin continuity equation 
also needs to be revised, as the angular 
momentum is now leaking away from the 
magnetic degrees of freedom

We will do it in a fashion formally analogous 
to the introduction of Gilbert damping:

The Galilean-invariant limit of the Stoner model is established by setting ↵ = �

s(1 + ↵n⇥)
dn

dt
= He↵ ⇥ n+ P

~
2e

(1 + �n⇥)(j ·r)n



ONSAGER RECIPROCITY
One more element is necessary to complete the thermodynamic 
picture: The Onsager-reciprocal motive force exerted on the 
electrons by magnetic dynamics

We proceed by casting the coarse-grained equations in the form 
of a quasistationary relaxation toward thermodynamic equilibrium:
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SPIN-MOTIVE FORCE
Starting with the charge continuity and LLG equations:

we obtain the Onsager-reciprocal motive force

The coupling constant in this theory of spin magnetohydrodynamics 
is given by

⇢̇ = �r · j
s(1 + ↵n⇥)ṅ = H⇥ n+ q⇤(1 + �n⇥)(j ·r)n

F = �rµ� q⇤(n⇥ ṅ� �ṅ)irni

YT and Mecklenburg, PRB (2008)

q⇤ = P
~
2e



Note that in the Onsager reciprocal of the spin continuity 
equation we return to the familiar geometric action!

GEOMETRIC NATURE

fx

ω

xn(x,t)

-fx

ħωħω

Barnes and Maekawa, PRL (2007)
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SPIN MAGNETOHYDRODYNAMICS
The collective spin magnetohydrodynamics can be recast as a 
gauge theory

with the free energy

which contains the essential information about the structure of 
the underlying spin-transfer torques and reciprocal pumping

F(J ,�,�0[m]) =
[J � (�+ �0)/c]2

2L

Volovik, JPC (1987); YT and Wong, PRB (2009)



ELECTRONIC PUMPING OF BEC
We want to develop a dc-transport route to inducing BEC of 
magnons in magnetic thin-film heterostructures

Microwave agitation (resonant or parametric) of the ferromagnet 
is replaced by electronic spin transfer

Bender, Duine, and YT, PRL (2012)

range of 6–9GHz. To avoid thermal overheating of the sample via
microwave radiation, pumping was performed in an intermittent
pulsed mode with an on/off ratio of 1/20 and a pulse width in the
range 1–100 ms. The film was placed in a uniform static magnetic
field, H, up to 1 kOe. The pumping process is illustrated in Fig. 1
inset. The low-frequency part of the spectrum of the magnons with
wavevectors parallel to the static magnetization is shown by the solid
line in the log–log plot. Those magnons have the lowest frequencies
among all the magnons23, and a characteristic frequency minimum
exists in their dispersion law24,25. A microwave photon with a
frequency of 2np creates two primary excited magnons of frequency
np and opposite wavevectors. These primary magnons relax very fast
and create a quasi-equilibrium distribution of thermalized magnons,
forming the magnon gas described by equation (1). As the chemical
potential of the gas increases with pumping power, a possible BEC
transition can take place near the minimum in the spectrum, as it
corresponds to the state with the absolute minimum in magnon
energy.
To examine the distribution of the magnons over the spectrum,

BLS spectroscopy22 was used. As shown in Fig. 1, the incident laser
beam is focused onto the resonator. The beam passes through the
YIG film, is reflected by the resonator, and passes through the film
again. Then the light is collected by a wide-aperture objective lens
and sent to the interferometer for frequency analysis of light photons
inelastically scattered by the magnons. This approach allows a
simultaneous detection of the magnons in a wide interval of in-
plane wavevectors, estimated as ^2 £ 105 cm21, which exceeds km,
as indicated by the red hatching in Fig. 1 inset. Thus, our BLS set-up
is able to detect all magnons at and close to the frequency minimum,
where the condensation should take place. The BLS experiments are
performed with time resolution, wherein the start of the pumping
pulse plays the role of the reference stroboscopic clock. The time
evolution of n(n) after the start of pumping is determined using time
frames of 100 ns width.
From the general point of view, the scattering intensity at a given

frequency, I(n), is directly proportional to the reduced spectral
density of scatterers (in our case magnons)26, IðnÞ/ ~rðnÞ ¼
~DðnÞnðnÞ; where the reduced density of states D̃(n) is calculated by
integration over the wavevectors of only the particles accessible in the

experiment. Thus, the occupation function of magnons, n(n), can be
obtained from the BLS experiments, provided their reduced density
of states, D̃(n), has been once determined independently.
The experiments were performed over a wide range of experimen-

tal conditions. Here we present the results corresponding to
H ¼ 700Oe and np ¼ 4.05GHz, which are typical for the range of
H ¼ 600–800Oe and np ¼ 3–4.5GHz. Figure 2 demonstrates a BLS
spectrum of magnons without pumping; such magnons always exist
in the sample owing to thermal fluctuation. The spectrum shows a
minimum magnon frequency of nm ¼ 2.1GHz (hnm/kB ¼ 101mK)
and a maximum cut-off frequency of 3.7 GHz, caused by the finite
interval of the magnon wavevectors accessible in the experiment.
This spectrum was used to independently determine the reduced
density of states function, D̃(n), as the calculated function D̃(n) (ref.
24) contains the value of the surface anisotropy of the YIG film,
which is not known with the adequate accuracy. In fact, the BLS
spectrum from thermally excitedmagnons corresponds to the known
occupation function, n(n), defined by equation (1) with m ¼ 0. Using
the value of the surface anisotropy and the proportionality factor
between I(n) and r̃(n) ¼ D̃(n)n(n) (the vertical scaling factor of the
spectra) as the two fitting parameters, the measured spectrum has
been fitted. The result of the fit is shown in Fig. 2 by the solid line,
whereas the obtained function D̃(n) is shown by the dashed line. We
should emphasize that once determined from this fit, D̃(n) has been
used for the description of BLS from pumped magnons.
Figure 3 shows the BLS spectra of the pumped magnons recorded

at different delay times, t, as indicated, for pumping pulse duration
1 ms, and repetition period 20 ms. From the figure, it is seen that
pumping continuously increases the number of magnons in the
system with time (note the different vertical scales of the graphs). As
four-magnon scattering is a nonlinear process, the thermalization
time of the pumped magnons is inversely proportional to the
magnon density. Figure 3a shows the data corresponding to
t ¼ 200 ns and two different pumping powers, P ¼ 4.0W (open
circles) and 5.9W (filled circles). The solid lines show the results of
the fits based on equation (1) with the chemical potential being the
fitting parameter. As seen in Fig. 3a, the data for P ¼ 4.0W cannot be
described using the Bose–Einstein statistics, illustrating that the
thermalization process at those magnon densities lasts more than
200 ns. By contrast, the data for the pumping power P ¼ 5.9W are
described very well by the Bose–Einstein statistics at room tempera-
ture and a non-zero chemical potential m, m/kB ¼ 98 ^ 1mK. Thus,
for this pumping power the magnon–magnon interaction is fast
enough to provide an efficient means for magnon thermalization for

Figure 2 | BLS spectrum of thermal magnons recorded without
pumping. The reduced density of states, ~DðnÞ; obtained from the fit of the
experimental data (solid line) using equation (1) with the zero chemical
potential, m, is shown by the dashed line. nm is the minimum frequency of
magnons, h is Planck’s constant, and kB is the Boltzmann constant.

Figure 1 | The set-up for magnon excitation and detection. The resonator
attached to the bottom of the yttrium–iron–garnet (YIG) film is fed by
microwave pulses. The laser beam is focused onto the resonator, and the
scattered light is directed to the interferometer. Inset, the process of
creation of two magnons by a microwave photon. The low-frequency
part of the magnon spectrum for the applied field H, parallel to the film
surface is shown by the solid line. It has a minimum at the wavevector
km ¼ 5 £ 104 cm21. The wavevector interval indicated by the red hatching
corresponds to the interval of the wavevectors accessible for Brillouin light
scattering (BLS).
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The total (z axis) spin current 

consists of the ground-state (condensed) magnon contribution

as well as the thermal magnon contribution

which is enhanced when

j
x

=
~g"#
⇡s

Z 1

✏0

d✏D(✏)(✏� µ0) [nBE (�(✏� µ))� nBE (�0(✏� µ0))]

SPIN-TRANSFER RATES
Insulator*(L)* Conductor*(R)*

k

k0

k

k0

conduc2on*electrons*

spin*current*

spin*current*

ap
pl
ie
d*
fie

ld
*q

q

e7*

e7*

e7*

e7*

z*
magnons*

j
s

= j0 + j
x

(toward ferromagnet):

j0 =
~g"#
2⇡s

(µ0 � ✏0)n0

T < T 0



BEC RATE EQUATION

Here, gR is the Fermi-level density of states of conduction
electrons and

jV0j2 !
VL

A

!
VR

gR

"
2 Z d3k

ð2!Þ3
d3k0

ð2!Þ3 jV0k0kj2"ð#k $ #FÞ

% "ð#k0 $ #FÞ; (5)

where #F is the Fermi energy (assumed to be much larger
than #0 and temperature) and VR the volume of the con-
ductor. Note that the current density j0 is only present in
the thermodynamic limit in the BEC phase, $L ¼ #0. For
simplicity, we are assuming the ground-state mode to be
nondegenerate, placing the corresponding q at 0. On the
other hand, the spin-current density jx (carrying spin trans-
fer via the excited magnon states) is present in both normal
and BEC phases and, after some manipulations, can be
written as

jx¼2!
Z 1

#0

d#jVxð#Þj2ð!$$#Þg2RgLð#Þ½nBð%Lð#$$LÞÞ

$nBð%Rð#$!$ÞÞ(; (6)

in terms of the energy-dependent density of magnon states
gLð#Þ. The (relatively weakly) energy-dependent quantity

jVxð#Þj2 !
VL

AgLð#Þ

!
VR

gR

"
2 Z d3k

ð2!Þ3
d3k0

ð2!Þ3
d3q

ð2!Þ3 jVqk0kj2

% "ð#k $ #FÞ"ð#k0 $ #FÞ"ð#q $ #Þ (7)

contains information about inelastic transition rates involv-
ing excited magnons.

The dynamics of spin flow across the interface are there-
fore determined by the sum of the condensate current
density j0, which is determined by spin accumulation in
the conductor and the ground-state magnon energy #0 (and
thus the applied magnetic field) and the thermal current
density jx, which depends on both temperature and spin-
potential biases. Note that sufficiently large spin splitting
!$ in the conductor could, in principle, drive spin density
into the insulator until the required density of magnons is
attained and the system undergoes Bose-Einstein conden-
sation. In a recent experiment by Sandweg et al. [11], spin
pumping into a metal by a magnetic insulator is driven by
the presence of parametrically excited magnons; in addi-
tion, a spin current between the metal and insulator arises
from a thermal gradient, as discussed above. The authors of
Ref. [11] made use of the inverse spin Hall effect, wherein
spin diffusion along a metal strip produces a detectable
Hall signal. Reciprocally, an electric current could be used
to generate spin accumulation on the surface of a metal via
the spin Hall effect; this surface spin accumulation may
then drive magnons into the insulator [12].

We henceforth focus on the regime where the tempera-
tures of both the left and right subsystems are fixed so that
any energy gain or loss, independent of spin gain or loss, is
completely absorbed or resupplied by thermal reservoirs. At
fixed TL, the density of excited magnons nx becomes a

monotonic function of$L ) #0 alone. Let us further suppose
that spin accumulation !$ in the right reservoir is indepen-
dent of spin diffusion from the insulator and fixed. If the total
density of magnons exceeds the critical BEC density nc
(corresponding to $L ¼ #0), nx reaches and remains pinned
at this value, nc, and only n0 is free to vary. In the BEC phase,
then, the time dependence of n0 is given by

n0ðtÞ ¼
&jc@dL þ

#
n0ð0Þ $

&jc@dL
$
e$t=&; (8)

where the excited magnon flux jc ¼ jxð$L ! #0Þ is time-
independent, as long as $L is anchored by the condensate at
#0, @=& ! 2!jV0j2ð#0 $ !$Þg2R=dL, and dL ¼ VL=A is the
magnetic layer thickness. The behavior of the Bose-Einstein-
condensed system thus falls into one of four regimes, as
depicted in Fig. 2. In the first, !$> #0 (so that &$1 < 0)
and n0ð0Þ> &jc=@dL, and n0 grows exponentially until satu-
rating at a value+Ms=$B (whereMs is the magnetization of
the ferromagnet and $B is the Bohr magneton). In this case,
magnon-magnon interactions become important ultimately
and the system must be treated more carefully here. This is
a realization of the ‘‘swaser’’ (i.e., a spin-wave analog of a
laser) put forward in Ref. [8] and observed in the context most
similar to ours [in a magnetic insulator yttrium iron garnet
(YIG)] in Ref. [12]. In the second regime, !$> #0 but
n0ð0Þ< &jc=@dL (requiring jc < 0), n0 decreases towards
zero, and the system enters the normal phase. The last two
regimes (corresponding to jc > 0 and jc < 0), which are of
more interest to us, occur when spin splitting in the conductor
is sufficiently small that !$< #0 and thus &$1 > 0, as
depicted in Fig. 3. Here, the steady-state phase no longer
depends on the initial condition: When jc > 0, the magnons
will Bose-Einstein condense (lower half of the main panel in
Fig. 3), and, if jc < 0, the normal phase with n0 ¼ 0 must
eventually be reached (upper half of the main panel in Fig. 3).

FIG. 2 (color online). Behavior of n0 as predicted by the rate
equation _n0 ¼ jtot=@dL ¼ jc=@dL $ n0=&. If jc had the sign
opposite to that shown in the figure, the crossing point
&jc=@dL would fall in the normal phase (n0 ¼ 0), thus preclud-
ing a BEC formation.
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DYNAMIC PHASE DIAGRAM

Bender, Duine, and YT, PRL (2012)

Kajiwara, Saitoh et al., Nature (2010)

In the normal phase (nx < nc), !L acquires time depen-
dence, and the rate of change of the total number of
magnons is _ntot ¼ _nx ¼ jxðtÞ=@dL. To illustrate these dy-
namics in a specific example, we consider a simple model
where the density of magnon states per unit insulator
volume VL has the form gLð"Þ ¼ GLð"="0 $ 1Þw (with
w> 0 and GL a positive real number). In terms of the
polylogarithm function

Li wþ1ðzÞ &
1

!wþ1

Z 1

0
dx

xw

ex$lnz $ 1
; (9)

the density of excited magnons becomes

nx ¼ #ðwÞð$L;!LÞ & GL
!wþ1Liwþ1ðzLÞ
$wþ1

L "w0
; (10)

where zLð$L;!LÞ & e$Lð!L$"0Þ is the effective magnon
fugacity (with zL ¼ 1 corresponding to a BEC).
Assuming for simplicity that Vxð"Þ is energy-independent
and equal to V0, one obtains from Eq. (6) an excited spin
current

jx ¼
@dL
%

!
#ðwþ1Þ
R $ #ðwþ1Þ

L

1$"!="0
þ #ðwÞ

R $ #ðwÞ
L

"
; (11)

where #ðwÞ
L & #ðwÞð$L;!LÞ and #ðwÞ

R & #ðwÞð$R;"!Þ. In
general, to find the spin accumulation in the normal phase
as a function of time, one must solve the rate equation
for the magnon fugacity zL. At low temperatures,
ð$$1

L ;$$1
R Þ ' j"0 $ "!j, the first term in Eq. (11) can

be neglected, allowing for a simple solution to the excited
magnon density:

nxðtÞ ¼ #ðwÞ
R þ ½nxð0Þ $ #ðwÞ

R )e$t=%; (12)

provided nx < nc. If "!< "0, %
$1 > 0 and nx decays

towards #ðwÞ
R , irrespective of its initial condition. If #ðwÞ

R <
nc, the insulator always remains in normal phase; when

#ðwÞ
R > nc, on the other hand, the magnons eventually

Bose-Einstein condense, and the system is henceforth

described by Eq. (8). Notice that the conditions #ðwÞ
R _ nc

are (in the spirit of the aforementioned low-temperature
approximation) equivalent to jc _ 0, which are consistent
with the conditions considered above for the system to
settle in the BEC or normal phase, respectively, as t ! 1.
The time dependence in the opposite high-temperature
regime, $$1

L ;$$1
R * j"0 $ "!j, is more complicated

than but in principle similar in behavior to the low-
temperature solution given by Eq. (12).
If the insulator temperature TL is left floating, the energy

flow between the two subsystems would give rise to the
dynamics of TL (supposing for simplicity TR is still fixed).
In the most extreme case, the insulator is allowed to ex-
change energy only with the conductor (and only by the
electron-magnon scattering discussed above, neglecting
phonon heat transfer), so changes in TL are dictated by the
rate at which energy is transferred across the barrier along
with spin. The coupled rate equations for energy and spin
transfer can then be solved to give time-dependent solutions
to the temperature TL and the ground and excited magnon
densities,nx andn0.While this program is beyond our scope
here, we may expect a significantly more complex phase
diagram, with hysteretic features sensitive to the initial
conditions and reentrant phase behavior.
All of the relevant quantities may be readily inferred

from existing measurements. In particular, the squared
matrix element jV0j2 is directly related to the real spin-
mixing conductance (per unit area) g"# by equating the
ground-state current density j0 for "! ¼ 0 with the ex-
pression for current pumped by a precessing magnetic
monodomain given in Ref. [6]: One obtains jV0j2 ¼
g"#=4&2sg2R, where s is the ferromagnetic spin density in
units of @. From this relation, the ‘‘magnon dwell time’’
%d & %j"!¼0 ¼ 2&sdL=g

"#!r and the effective Gilbert
damping constant '0 & 1=2!r%d ¼ g"#=4&sdL (corre-
sponding to the interfacial, i.e., spin-pumping [6], magnon
decay) are expressed in terms of the spin-mixing conduc-
tance. (!r & "0=@ here is the ferromagnetic-resonance
frequency.) We use the term ‘‘Gilbert damping’’ here to
refer to dynamical magnetization damping generally, in-
cluding damping of inhomogeneous fluctuations, in lieu of
the alternative ‘‘Landau-Lifshitz’’ damping; while the two
are mathematically equivalent, historically the former
has become generally favored over the latter, and so we
follow this convention. In YIG films (4&Ms + 2 kG,
g"# , 1014 cm$2 [12,13]), the spin-pumping Gilbert
damping '0 dominates over the intrinsic Gilbert damping
(', 10$4) below thicknesses dL , 100 nm. Theoretically

FIG. 3 (color online). When "!< "0, the steady-state phase
is insensitive to the initial condition for n0 but depends on the
temperature bias TL $ TR and the difference "!$ "0. As the
splitting "! increases, the critical temperature for TL increases
until it equals TR. Examples of time dependence in the normal
and BEC phase regions are shown in the upper- and lower-left
panels, respectively. When "!> "0, depending on the initial
condition, the driven magnon system is either unstable or relaxes
towards the normal phase.
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CONDENSATE INTERACTIONS
Total condensate/cloud spin density:

Here,                       in terms of the free energy
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MI/TI EXCHANGE INTERACTION

is still too small to be explained by the surface states
alone. However, the low-temperature transport exhibits
interesting 2D mesoscopic effects that are not com-
pletely understood !Checkelsky et al., 2009". Doping
Bi2Se3 with copper leads to a metallic state that shows
superconducting behavior #Fig. 17!b"$ below 3.8 K
!Wray et al., 2009; Hor, Williams, et al., 2010". This has
important ramifications for some of the devices pro-
posed in Sec. IV.

V. EXOTIC BROKEN SYMMETRY SURFACE PHASES

Now that the basic properties of topological insulators
have been established, we may ask what can be done
with them. In this section we argue that the unique prop-
erties of topological insulator surface and edge states are
most dramatic if an energy gap can be induced in them.
This can be done by breaking T symmetry with an exter-
nal magnetic field !Fu and Kane, 2007" or proximity to a
magnetic material !Qi, Hughes, and Zhang, 2008", by
breaking gauge symmetry due to proximity to a super-
conductor !Fu and Kane, 2008", or by an excitonic insta-
bility of two coupled surfaces !Seradjeh, Moore, and
Franz, 2009". In this section we review the magnetic and
superconducting surface phases.

A. Quantum Hall effect and topological magnetoelectric effect

1. Surface quantum Hall effect

A perpendicular magnetic field will lead to Landau
levels in the surface electronic spectrum and the quan-
tum Hall effect. The Landau levels for Dirac electrons
are special, however, because a Landau level is guaran-
teed to exist at exactly zero energy !Jackiw, 1984". This
zero Landau level is particle-hole symmetric in the sense
that the Hall conductivity is equal and opposite when
the Landau level is full or empty. Since the Hall conduc-
tivity increases by e2 /h when the Fermi energy crosses a
Landau level the Hall conductivity is half integer quan-
tized !Zheng and Ando, 2002",

!xy = !n + 1/2"e2/h . !17"

This physics has been demonstrated in experiments on
graphene !Novoselov et al., 2005; Zhang et al., 2005".
However, there is an important difference. In graphene
Eq. !17" is multiplied by 4 due to the spin and valley
degeneracy of graphene’s Dirac points, so the observed
Hall conductivity is still integer quantized. At the sur-
face of the topological insulator there is only a single
Dirac point. Such a “fractional” integer quantized Hall
effect should be a cause for concern because the integer
quantized Hall effect is always associated with chiral
edge states, which can only be integer quantized. The
resolution is the mathematical fact that a surface cannot
have a boundary. In a slab geometry shown in Fig. 18!a",
the top and bottom surfaces are necessarily connected to
each other and will always be measured in parallel !Fu
and Kane, 2007", doubling the 1/2. The top and bottom

can share a single chiral edge state, which carries the
integer quantized Hall current.

A related surface quantum Hall effect, called the
anomalous quantum Hall effect, can be induced with the
proximity to a magnetic insulator. A thin magnetic film
on the surface of a topological insulator will give rise to
a local exchange field that lifts the Kramers degeneracy
at the surface Dirac points. This introduces a mass term
m into the Dirac equation #Eq. !16"$, as in Eq. !4". If the
EF is in this energy gap, there is a half integer quantized
Hall conductivity !xy=e2 /2h !Pankratov, 1987", as dis-
cussed in Sec. II.B.2. This can be probed in a transport
experiment by introducing a domain wall into the mag-
net. The sign of m depends on the direction of the mag-
netization. At an interface where m changes sign #Fig.
18!d"$ there will be a 1D chiral edge state, analogous to
unfolding the surface in Fig. 18!b".

2. Topological magnetoelectric effect and axion electrodynamics

The surface Hall conductivity can also be probed
without the edge states either by optical methods or by
measuring the magnetic field produced by surface cur-
rents. This leads to an intriguing topological magneto-
electric effect !Qi, Hughes, and Zhang, 2008; Essin,
Moore, and Vanderbilt, 2009". Imagine a cylindrical to-
pological insulator with magnetically gapped surface
states and an electric field E along its axis. The azi-
muthal surface Hall current !e2 /2h"%E% leads to a
magnetic-dipole moment associated with a magnetiza-
tion M="E, where the magnetoelectric polarizability is
given by "=e2 /2h.

A field theory for this magnetoelectric effect can be
developed by including a # term in the electromagnetic
Lagrangian, which has a form analogous to the theory of
axion electrodynamics that has been studied in particle
physics contexts !Wilczek, 1987",
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M M

TI
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=e2/2hσxy

=e2/2hσxy
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E

FIG. 18. !Color online" Surface quantum Hall effect. !a" The
Dirac spectrum is replaced by Landau levels in an orbital mag-
netic field. !b" The top and bottom surfaces share a single chi-
ral fermion edge mode. !c" A thin magnetic film can induce an
energy gap at the surface. !d" A domain wall in the surface
magnetization exhibits a chiral fermion mode.
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Theoretical study of the dynamics of magnetization on the topological surface
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We investigate theoretically the dynamics of magnetization coupled to the surface Dirac fermions of a
three-dimensional topological insulator by deriving the Landau-Lifshitz-Gilbert !LLG" equation in the presence
of charge current. Both the inverse spin-galvanic effect and the Gilbert damping coefficient ! are related to the
two-dimensional diagonal conductivity "xx of the Dirac fermion, while the Berry phase of the ferromagnetic
moment to the Hall conductivity "xy. The spin-transfer torque and the so-called # terms are shown to be
negligibly small. Anomalous behaviors in various phenomena including the ferromagnetic resonance are pre-
dicted in terms of this LLG equation.
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Topological insulator !TI" provides a new state of matter
topologically distinct from the conventional band insulator.1
In particular, the edge channels or the surface states are de-
scribed by Dirac fermions and protected by the band gap in
the bulk states, and backward scattering is forbidden by the
time-reversal symmetry. From the viewpoint of the spintron-
ics, it offers a unique opportunity to pursue novel functions
since the relativistic spin-orbit interaction plays an essential
role there. Actually, several proposals have been made such
as the quantized magnetoelectric effect,2 giant spin rotation,3
magnetic properties of the surface state,4 magnetotransport
phenomena,5 and superconducting proximity effect including
Majorana fermions.6–8

Also, a recent study focuses on the inverse spin-galvanic
effect in a TI/ferromagnet interface, predicting the current-
induced magnetization reversal due to the Hall current on the
TI.9 In Ref. 9, the Fermi energy is assumed to be in the gap
of the Dirac dispersion opened by the exchange coupling. In
this case, the quantized Hall liquid is realized, and there oc-
curs no dissipation coming from the surface Dirac fermions.

However, in realistic systems, it is rather difficult to tune
the Fermi energy in the gap since the proximity-induced ex-
change field is expected to be around 5–50 meV. Therefore,
it is important to consider the generic case where the Fermi
energy is at the finite density of states of Dirac fermions,
where the diagonal conductivity is much larger than the
transverse one, and the damping of the magnetization be-
comes appreciable. Related systems are semiconductors and
metals with Rashba spin-orbit interaction, where the spin-
galvanic effect and current-induced magnetization reversal
have been predicted10 and experimentally observed.11,12

Compared with these systems where the Rashba coupling
constant is a key parameter, the spin and momentum in TI
are tightly related to each other corresponding to the strong-
coupling limit of spin-orbit interaction, and hence the gigan-
tic spin-galvanic effect is expected.

In this Rapid Communication, we study the dynamics of
the magnetization coupled to the surface Dirac fermion of TI.
Landau-Lifshitz-Gilbert !LLG" equation in the presence of
charge current is derived microscopically, and !i" inverse

spin-galvanic effect, !ii" Gilbert damping coefficient !, !iii"
the so-called # terms, and !iv" the correction to the Berry
phase, are derived in a unified fashion. It is found that these
are expressed by relatively small number of parameters, i.e.,
the velocity vF, Fermi wave number kF, exchange coupling
M, and the transport lifetime % of the Dirac fermions. It is
also clarified that the terms related to the spatial gradient are
negligibly small when the surface state is a good metal. With
this LLG equation, we propose a ferromagnetic resonance
!FMR" experiment, where modifications of the resonance
frequency and Gilbert damping are predicted. Combined
with the transport measurement of the Hall conductivity,
FMR provide several tests of our theory. Throughout this
Rapid Communication, we take the unit of &=1.

Derivation of LLG equation. By attaching a ferromagnet
on the TI as shown in Fig. 1, we can consider a topological
surface state where conducting electrons interact with local-
ized spins, S, through the exchange field,
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FIG. 1. !Color online" !a" Illustration of the Dirac dispersion on
top of TI. The Fermi level 'F is far above the surface gap opened by
magnetization in the ferromagnetic layer. !b" Sketch of FMR ex-
periment in the soft magnetic layer. The substrate in the figure is TI,
which is capped by a layer of soft ferromagnet. The magnetization
precesses around the external magnetic field Heff.
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MI/TI DOMAIN-WALL DYNAMICS
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DW/CHIRAL MODE COUPLING
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torque on the DW structure

Josephson-type relations

3

coupling J⇤, F ⇥
⇥ contributes merely to the out-of-plane

anisotropy K in Eq. (1), which can be absorbed by a re-
definition K ⌃ K + O(J2

⇤) ⌅ K�. Higher-order terms
in F ⇥

⇥ , including those that depend on spatial inhomo-
geneities in mz, would appear only at order J4

⇤ (while cu-
bic terms are prohibited by the time-reversal invariance).
The leading-order MI/TI exchange coupling thus pro-
duces an anisotropy ⌥ JJ⇤, which enhances tendency to
form magnetic textures (such as skyrmion lattices), and a
texture-independent (easy-axis) out-of-plane anisotropy
⌥ J2

⇤, corresponding to the first and second terms in
Eq. (9), respectively.

In addition to the equilibrium current density (6),
there are also surface currents driven by the real and ficti-
tious electromagnetic fields and the current carried by the
gapless chiral mode. The latter may result in dissipation
if connected to reservoirs (such as ungapped TI regions).
All these currents contribute to the torque (3). [If Idw
is the 1D chiral current, the corresponding 2D current
density in the y direction is jdw ⇧ Idw�(x� xdw), which
is localized on the scale of the chiral-mode width ⇥.] In
particular, the torques arising from the e�ective electric-
field-induced currents [Eqs. (2) and (7) of the ST], corre-
spond to the Chern-Simons action for the magnetic film
coupled to the electromagnetic field after substitution of
the total e�ective 3-potential Aµ ⌅ Aµ+aµ in Eq. (4) of
the ST.

Henceforth focusing on the configuration sketched in
Fig. 1, a finite-length DW cuts across a ferromagnetic
strip connecting semi-infinite gapless 2D reservoirs flank-
ing its sides. In this case, the reservoirs provide an equili-
bration and dissipation mechanism for the dc transport.
In particular, at low frequencies, the chiral current is
given by the Landauer-Büttiker formula [16]

Idw = gQ

�

DW
dyEy ⌅ gQVy (10)

for the current in the y direction in response to the to-
tal e�ective field Ey applied along the DW length (the
magnetic strip width). Vy = Vy+vy is the corresponding
e�ective voltage (Vy applied and vy induced by magnetic
dynamics) and gQ ⌅ e2/h is the conductance quantum.
The current Idw in Eq. (10) is defined at the exit side
of the chiral mode and, concerning the applied voltage
Vy, only the e�ective electric field along the DW wire
and the chemical potential applied to the entrance side
of the chiral mode need to be included. The chemical
potential applied to the exit side of the chiral mode, on
the other hand, has no e�ect on the current (at both
the exit and the entrance) in the corresponding DW.
We emphasize that the current entering the chiral mode
can generally be distinct from Idw. In particular, the
dynamically-induced voltage vy as well as the voltage due
to an electric field applied along the DW do not a�ect the
entrance current, which is fully governed by the chemical
potential applied at the respective lead. In this case, any
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FIG. 2. The Onsager reciprocity relates voltage-induced DW
dynamics (via spin torques) in the top panel [Eq. (13)] to
the magnetization-dynamics-generated current (via fictitious
EMF) in the bottom panel [Eq. (15)]. Note that the DW’s in
the bottom panel are mapped back onto their time-reversed
parents in the top panel by a � rotation in the xy plane. This
means that Q̇ pumped by ⇥̇dw for the right chiral mode is the
same in both panels. The left DW is treated as pinned (and
thus magnetically inert) in our treatment. However, when the
electron-electron interactions are taken into account, electro-
static charge imbalance produced by fictitious forces near one
DW could induce currents also along the other DW, making
such double-DW system generally coupled.

imbalance between the currents at the sides of the DW
is absorbed by the gapped 2D regions flanking the chi-
ral mode [in accordance with the e�ective magnetic field
Bz = Bz + bz entering Eqs. (3) and (7) of the ST, where
bz ⌅ z · r ⇤ a = �(J/ev)r · m is the texture-induced
field], which we schematically sketch in the bottom panel
of Fig. 2. Since the currents entering and exiting each
individual DW thus depend very sensitively on the elec-
trostatic considerations concerning the break-down of the
e�ective electrochemical potentials into the electric and
chemical counterparts, we will focus on the noninteract-
ing (i.e., well-screened) electrons driven by a combination
of a chemical -potential bias at the leads and magnetiza-
tion dynamics along the DW.

We are now fully equipped to derive the equations of
motion for the collective soft DW coordinates xdw(t) and
⇤dw(t) that parametrize the DW position and internal
structure according to Eq. (2). In the presence of the
(equilibrium and nonequilibrium) current-induced spin
torques [corresponding to Eqs. (9) and (10), respectively]
as well as a uniform magnetic field h applied in the y di-
rection, the full Landau-Lifshitz-Gilbert (LLG) equation

I
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THERMAL HALL EFFECT
A magnetic texture fomented by a DM-type spin-orbit interaction:

2

FIG. 1. Pictorial representation of the thermal spin Hall ef-
fect. A temperature difference ∆T applied to a sample leads
to a finite heat current. Since the heat current is carried
by the magnons in the system, the fictitious magnetic field
that magnons experience due to a non-trivial magnetic ground
state will lead to a finite thermal Hall conductivity.

III we derive the relevant ground state properties of the
different ground states in the phase diagram of the insu-
lating ferromagnet with nonzero Dzyaloshinskii-Moriya
interaction. In Sec. IV we calculate the band structure
of one of the ground states, the triangular skyrmion lat-
tice, and calculate its thermal Hall conductivity.

II. MAGNONS IN THE PRESENCE OF
MAGNETIC TEXTURE

We consider a two-dimensional non-itinerant ferromag-
net in the x-y plane with spatially varying and time de-
pendent spin density sm(r, t). The spin density is related
to the magnetization M(r, t) as sm(r, t) = M(r, t)/γ,
where γ is the gyromagnetic ratio (γ < 0 for electrons).
The magnitude s of the spin density is assumed to be
constant, and m(r, t) is a unit vector. The system is
described by the Lagrangian10,11

L =

∫

d2r [D(m) · ṁ− F(m, ∂jm)] . (1)

Here D = s! (n×m) /(1 +m · n) is the vector potential
corresponding to Wess-Zumino action with an arbitrary
n pointing along the Dirac string. F(m, ∂jm) is the mag-
netic free energy density of the system, which we assume
to be of the form (double indices are summed over)

F(m, ∂jm) =
Js

2
(∂jm)2−Msm·H+sFΓ(m, ∂jm). (2)

Here J is the strength of the exchange interaction, Ms =
γs is the saturation magnetization, H the external mag-
netic field (which we will always assume to be in the z di-
rection), and FΓ(m, ∂jm) describes terms due to broken
symmetries. For isotropic ferromagnets in the exchange

approximation, the leading order terms in the free en-
ergy are quadratic in the texture [first term in Eq. (1)].
Breaking inversion symmetry by spin-orbit interactions,
while still retaining isotropy in the x-y plane, allows to
construct terms that are first order in texture. These
terms are given by

FΓ(m, ∂jm) = ΓRmz∇ ·m+ ΓDMm · (∇×m) . (3)

Here, we defined ∇ = ∂xx̂ + ∂yŷ. The first term is due
to structural inversion symmetry breaking and hence is
anisotropic in the z direction. Such terms occur in sys-
tems with finite Rashba spin-orbit interaction16 or on the
surface of a topological insulator.15 The second term de-
scribes Dzyaloshinskii-Moriya interaction,17 which origi-
nates from the breaking of bulk inversion symmetry and
is therefore isotropic. We note that the two terms in Eq.
(3) are equivalent (up to an irrelevant boundary term)
under a simple rotation around the z axis in spin space.
Since all other terms in Eq. (1) are invariant under such
rotations, we can always absorb the term proportional
to ΓR in the term proportional to ΓDM. We will there-
fore put ΓR to zero in the remainder of this work. For
simplicity, we have ignored a term −κm2

z that would de-
scribe easy axis anisotropy, and a term −Msm · Hm/2,
where Hm describes the magnetic stray field, in Eq. (2).
Substitution of Eq. (1) in the Euler-Lagrange equation
leads to the Landau-Lifshitz equation

s!ṁ−m× δmF (m, ∂jm) = 0, (4)

where F (m, ∂jm) is the total free energy of the system.
We split the magnetization m in a static equilibrium
magnetization m0 and small fast oscillations δm (spin
waves) around the equilibrium magnetization. To lowest
order in δm the two are orthogonal. In a textured magnet
m0 = m0(r), which makes finding the elementary exci-
tations a nontrivial task. To circumvent this issue we in-
troduce a coordinate transformation m′(r) = R̂(r)m(r),
where R̂(r) is such that the new equilibrium magnetiza-
tion m′

0 is constant and parallel to the z axis. In this
coordinate frame the spin waves are in the x-y plane.
The 3 × 3 matrix R̂ describes a rotation over an an-

gle π around the axis defined by the unit vector n =
[ẑ+m0] / [2 cos (θ/2)]. Here, θ is the polar angle of m0.
Using Rodriques’ rotation formula, we find R̂ = 2nnT−1̂.
The effect of the transformation to the new coordi-

nate system is that we have to use the covariant form of
the differential operators, ∂µ → (∂µ + Âµ), with Âµ =
R̂−1(∂µR̂), in the Landau-Lifshitz equation. The sub-
script µ describes both time (µ = 0) and space (µ = 1, 2)
coordinates.
In the new coordinate system, the Landau-Lifshitz

equation for the free action Eq. (2) becomes

i!∂tm+ =
[

J (∇/i+A)2 + ϕ
]

m+. (5)

Here, m± = (δm′
x ± iδm′

y)/
√
2 describe circular spin

waves in the rotated frame. Furthermore, ϕ = m0 ·H/s+

Hoogdalem, YT, and Loss, PRB (2013)
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zero average (we work in the Landau gauge)

A0(r) = −B0yx̂

A′(r) =
∑

τ,η

[Ax(τ, η)x̂+Ay(τ, η)ŷ] e
i(τ k̂1+ηk̂2)·r.(15)

Here, B0 = 8π/(
√
3a2) is the average fictitious mag-

netic field, and k̂1 = (2π/a)(x̂ − ŷ/
√
3) and k̂2 =

(2π/a)(2/
√
3)ŷ are the basis vectors of the reciprocal lat-

tice, such that the periodic part of the fictitious vector
potential satisfies A′(r+a1) = A′(r+a2) = A′(r). Such
spatially varying magnetic fields are known to give rise
to finite Hall effects, even in the absence of a nonzero
average.25

IV. THERMAL HALL CONDUCTIVITY OF
THE SKYRMION LATTICE

Since the skyrmion lattice can be described by a free
bosonic Hamiltonian with a spatially varying fictitious
magnetic field with on average two magnetic flux quanta
per unit cell and the same symmetry as the skyrmion
lattice, the eigenstates of the skyrmion lattice are mag-
netic Bloch states. In Sec. IVA we will determine the
excitation spectrum and explicit form of these states. In
Sec. IVB we will show how the thermal Hall conduc-
tivity of the skyrmion lattice is determined by the Berry
curvature of these magnetic Bloch states.

A. Diagonalization

To find the elementary excitations of the skyrmion lat-
tice, we need to diagonalize the Hamiltonian H in Eq.
(7) with the fictitious magnetic vector potential given in
Eq. (14). We do this by numerically diagonalizing the
matrix that results from rewriting H in the basis of the
Landau levels that describe excitations with the appro-
priate symmetry in the presence of the fictitious magnetic
vector potential A0(r) only. Our derivation follows that
of Ref. 24, with the difference that we consider the case
with two instead of one flux quantum per unit cell.
Eigenstates for the free system with only a homoge-

neous magnetic field B0ẑ and without any underlying
symmetries are given by

ψnkx(r) =
Nn√
L
e−ikxxϕn(B

1

2

0 y +B
− 1

2

0 kx), (16)

where Nn = 1√
2nn!

(

B0

π

)
1

4 and ϕn(x) = e−x2/2Hn(x),

with Hn(x) the n-th Hermite polynomial. The corre-
sponding energies are En = 2JB0(n + 1/2). To account
for the presence of the triangular lattice, and the fact
that every unit cell contains two flux quanta, we need to
find the most general linear combination of eigenstates

FIG. 3. Band structure of the skyrmion lattice with parame-
ters R = 45 nm, ζ = 70 µm−1, and 2JB0/kB ≈ 50 mK. The
labels on the horizontal axis denote (k1, k2), with the wave
vectors normalized to 2π/a.

that satisfies

M̂a1
ψnmk(r) = eik1aψnmk(r),

M̂a2
ψnmk(r) = eik2aψnmk(r). (17)

Here, k1 and k2 are defined such that (2π/a)k = k1k̂1 +
k2k̂2. Furthermore, k is restricted to lie within the first
Brillouin zone. We will discuss the origin of the quan-
tum number m later. We have to work with magnetic
translation operators M̂a1,2 since the canonical momen-
tum is no longer a good quantum number in the pres-
ence of the vector potential A0(r). These magnetic
translation operators are defined as M̂a1

= T̂a1
and

M̂a2
= exp[−i(4π/a)x]T̂a2

, where T̂a1,2 are the usual
translation operators. The appropriate eigenstates are
then given by

ψnmk(r) =
∞
∑

l=−∞

(−1)(l+
m
2
)(l+m

2
−1)e−i(l+m

2
)(

k1
2
−k2)a

×ψn,−k1−(l+m
2
) 4π

a
. (18)

The quantum number m, which in our case can take val-
ues 0 or 1, accounts for the fact that in the presence of a
natural number p of flux quanta per unit cell each mag-
netic band will split up in p subbands. These subbands
are degenerate for a constant magnetic field, but will in
general split for a spatially varying magnetic field, as we
will see later. The set of wave functions defined in Eq.
(18) constitutes a complete orthonormal basis with trian-
gular symmetry. The eigenfunctions are chosen in such a
way that perturbations in the fictitious magnetic vector
potential that are periodic in the triangular lattice are
diagonal in the momenta k1 and k2.
We are now in a position to calculate the matrix el-

ements of H with respect to the basis defined by the

6

eigenstates in Eq. (18). We rewrite H = H0 +H1 +H2,
where the subscript denotes the order in which A′(r) oc-
curs in the respective term. H0 is then trivially given
by

〈n′,m′|H0|n,m〉 = 2JB0 (n+ 1/2) δn,n′δm,m′ . (19)

The matrix elements of H1 are given by

〈n′,m′|H1|n,m〉n′≥n = Jδm′−m,τ

∑

τ,η

B(τ, η)

×
[

Ln′−n
n (zτη)−

(

n+ n′

zτη
Ln′−n
n (zτη)−

2n′

zτη
Ln′−n
n−1 (zτη)

)]

× (−1)mηGn′n(τ, η), (20)

and the matrix elements of H2 by

〈n′,m′|H1|n,m〉n′≥n = Jδm′−m,τ ′+τ

×
∑

τ ′,η′,τ,η

[Ax(τ
′, η′)Ax(τ, η) +Ay(τ

′, η′)Ay(τ, η)]

× (−1)m(η′+η)Gn′n(τ
′ + τ, η′ + η). (21)

We defined the function

Gn′n(τ, η) =

(

n!

n′!

)1/2

(
√

2/B0π)
n′−n

[

i
2η − τ

a
−
τ

a

]n′−n

×e−zτη/2eπiτη/2eiηk1a/2eiξ(k2a+π)/2. (22)

Furthermore, we defined zτη = (2π/
√
3)(τ2 − τη + η2).

The function Lα
n(x) is the associated Laguerre polyno-

mial. The first 10 subbands of the band structure of the
skyrmion lattice with parameters 2JB0/kB ≈ 50 mK,
R = 45 nm, and ζ = 70 µm−1 are given in Fig. 3. In
our numerical calculation we used the fact that the cou-
pling between two band decays super-exponentially [to
be precise, it decays as

√

(n!/n′!)], so that only a limited
number of bands have to be taken into account. It is
seen that the inclusion of the spatially varying fictitious
magnetic field has a pronounced effect, leading both to
different splittings of the different subbands, as well as
substantial broadening of the subbands. From Fig. 3 it
is seen that the typical level splitting between magnetic
subbands is 50 mK, which sets the temperature scale on
which the system is in the quantum Hall regime. Sys-
tems with larger ratio Γ2

DM/J will display quantum Hall
behavior at higher temperatures. We note that finite
Gilbert damping α will broaden the different magnetic
subbands by an amount (∆ω/ω) = 2α. Eventually this
will destroy the visibility of individual subbands. How-
ever, since the Gilbert damping is around α ∼ 10−3 in a
range of different materials, this only becomes problem-
atic at high magnetic subbands.
We note that within our model we do not find the ex-

pected Goldstone modes associated with the skyrmion
lattice.26 We argue that this is due to our adiabatic as-
sumption, which breaks down for the smallest wave vec-
tors. Assuming a quadratic dispersion for the magnons,

FIG. 4. Berry curvature of the two highest magnetic sub-
bands in Fig. 3 in a single Brillouin zone. The subband cor-
responding to the top figure does not carry a net curvature,
the bottom figure carries 2π.

we can estimate the magnitude |km| of the characteris-
tic wave vector of the magnons that make up the lowest
magnetic subband as J |km|2 = JB0, which leads to a
typical magnon wave length λm ∼ a. The wave vector
|km| increases for higher subbands. Since the accuracy
of our model increases with increasing wave vector, our
description improves for higher magnetic subbands.
In the next section we will investigate the effect of the

finite bandwidth of the magnetic subbands on the ther-
mal Hall conductivity of the skyrmion lattice.

B. Thermal Hall conductivity

It is well known27 that the semi-classical dynamics of
a wave packet in the basis of the magnetic Bloch states
unk(r) = e−ik·rψnk(r) is given by

ṙ = ∂kEn(k)− k̇×Ωn(k) and !k̇ = 0. (23)

We have assumed here that there are no electric fields and
that the states unk(r) are the eigenstates of the Hamil-
tonian H including the fictitious magnetic vector poten-
tial A(r). Ωn(k) is the Berry curvature of the magnetic
Bloch band. Since we consider a two-dimensional system,
only its z component is relevant. It is given by

Ωn(k) = 2Im

[〈

unk(r)

∂kx

∣

∣

∣

∣

unk(r)

∂ky

〉]

. (24)

For the skyrmion lattice, the magnetic Bloch states are
given by

unk(r) = e−ik·r
∑

n′,m′

cnn′m′kψn′m′k(r). (25)

Katsura, Nagaosa, and Lee, PRL (2010); Onose et al., Science (2010)
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SUMMARY
Nonequilibrium magnetism is enriched by the interplay between 
the itinerant (electron or magnon) and the collective 
(monodomain, domain wall etc.) degrees of freedom

The core physics is based on the Onsager-reciprocal spin torque 
and pumping phenomena, in practice facilitated by spin Hall effect

Strong pumping generally leads to condensation of magnons

The (Galilean) phenomenology can be constructed based on the 
SU(2) (Berry phase) gauge structure of the interaction between 
fluxes and spatiotemporally inhomogeneous magnetic precession

Strong spin-orbit interactions enrich the gauge structure and lead 
to a myriad of Hall-like phenomena for charge and heat transport


