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| am an old man now, and when | die and go to heaven there are two matters
on which | hope for enlightenment. One is quantum electrodynamics, and the
other is the turbulent motion of fluids. And about the former | am rather

optimistic.
Horace Lamb (1932)



- Concentrating on isotropic homogeneous
turbulence was a strategic error in the history of
the science of fluid dynamics.

» The reason is IHT is essentially, intrinsically and
irreducibly nonlinear so it is difficult to make
analytical progress.

- Remarkably, the turbulent systems of primary
practical interest are essentially linear and admit
a—  wings analytic solution.

 The reason for this linearity is that turbulence in
pipes and channels, in the atmospheric boundary
layer, baroclinic turbulence in the Earth’s
midlatitude jets, turbulent jets in the gaseous
planets, drift wave turbulence in magnetic

el B Je pepes confinement devices etc. are characterized by

strong shear.

= * Linearizing about this shear results in a quasilinear
é/éwzweé‘ . . .
dynamics that allows analytic solution for the
statistical equilibrium turbulent state.
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Earth’s polar front jet

jets in tokamaks jets in shear flow turbulence



Perturbation Dynamics and Turbulence Theory

In The Theory of Sound
(1877) John William Strutt,
3rd Baron Rayleigh advanced
the method of normal mode
stability analysis.

- If the turbulence problems of interest are
essentially linear why was this not immediately
recognized?

- The reason is that solutions for the turbulent
state were sought as eigenmodes of stationary
states in the linearized N-S equations.

- However, this application of Rayleigh’s method
fails to identify the entire manifold of modes that
are responsible for establishing and sustaining
turbulence.

* In fact, the structures that sustain and regulate
turbulence do arise as instabilities, but not Iin
the linearized N-S equations.



Statistical State Dynamics (SSD) underlies turbulence

The turbulence problem has analytical solution only when
the N-S equations are expressed using statistical variables
(means and moments of velocity) rather than the state
variables (velocity).

The approach to studying turbulence based on statistical
state dynamics is reviewed here:

F & loannou, (2019): Statistical State Dynamics: A New Perspective on
Turbulence in Shear Flow. Zonal Jets Phenomenology, Genesis, and Physics. Ed. Boris
Galpirin and Peter L. Read. Cambridge University Press 2019, 380-400.



ITER and the Jet Stream
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F & Ioannou, 2009: A Stochastic Structural Stability Theory model of the drift wave-zonal flow system., Physics of Plasmas, 16, 112903
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Layering in Stratified Flow

NL buoyancy layers
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Fitzgerald, . G., & F (2018). Statistical state dynamics of vertically sheared horizontal flows in two-dimensional Stratified turbulence.
Journal of Fluid Dynamics , 854, 544-590.



Some background has been given on the problem of the emergence of
zonal winds in the gaseous planets so we will build on that for our example.



Jupiter’s Winds are Emergent Jets




Jupiter’s Winds are Emergent Jets




Jupiter’s Winds are Steady
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Winds from Cassini (1997; black); Voyager 2 (1979; red) (Porco et al., 2003;
Limaye, 1986)



Jupiter’s Winds are Eddy
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midlatitude beta-plane with x, y the zonal and the meridional coordinates.
streamfunction, 1, is the state variable with v = —0,9¢ and v = 0,9.

total vorticity is g + 2Q + By, with ¢ = V2% the relative and 29 + By the
planetary component.

dynamics is governed by the barotropic vorticity equation:

Orq + udpq + v0,q + Bv = —1rq — V4 A*q + VeF .



Form the Zonal Mean/Perturbation Form of the Vorticity Equation:

perturbation stochastic
nonlinearity excitation
o.U =v'q —rU l /

Org = —U0.q + (Uyy — B)0p —rq —vaV2q + F. + /2R

Linear perturbation operator = A

-——p



Drop the nonlinearity in the perturbation vorticity equation to
form the quasi-linear (QL) vorticity equation:

perturbation

nonlinearity stochastic
(ignored) excitation
0tU p— ’Ulq/ — TU l /

01 = —Udpq + (Uyy — B)0:0 —rq’ — vy V3¢ + K + /2|

Linear perturbation operator = A(U)

-—p

Note two properties of the QL vorticity equation:

 Rewriting the NL vorticity equation in mean/perturbation form provides the
opportunity to isolate, retain or eliminate, mechanisms in the vorticity equation.

- Eliminating the perturbation nonlinearity by forming the QL equation eliminates
both the mechanism of the arrested cascade as well as the mechanism of
wave breaking i.e. the “surf zone” jet formation mechanism.



Under stochastic excitation of isotropic turbulence NL and QL
dynamics produce indistinguishable jets
(NB: despite QL supporting neither a cascade nor wave breaking)

Zonal jets are the same
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From QL dynamics to SSD

- The QL system affords insight into the dynamics of [-plane turbulence but
even more insight is obtained by formulating the associated SSD.

- The associated SSD follows from replacing the perturbation dynamics of
QL by its associated ensemble mean dynamics.

- Stable fixed point solutions of the SSD for a turbulent system correspond
to analytic solution of the turbulence problem for that system.



Obtaining the SSD equation

In the limit of a large number of independent realizations of the excitation
acting simultaneously on the mean jet the individual time dependent forcing of
the mean flow is replaced by the ensemble mean of these forcings (central limit
theorem) and this nonlinear coupled system becomes autonomous:

function of C

!

dU
7 =v'q'—rU <— zonal mean jet equation
{
excitation spatial covariance
d_C — AC + CA + Q/ ensemble mean perturbation
dt covariance equation

- The SSD governs the dynamics of the statistical moment evolution.

- The SSD has the same dynamical restriction as QL dynamics while in
addition it has zero fluctuations. This allows exact, analytical, fixed point
solution for the statistical state of a turbulent system to be obtained - which
IS what is meant by solving a turbulence problem.



The test function example

Use the ensemble mean perturbation covariance to obtain the steady
response to a test function imposed on the turbulence:

Spatial c.ovaria.mc_e of the
/ rST:Z?rnZ?rt\Ilcr:]ge );nggﬁg round of
— A(&U)C + CA(5U) + Q isotropic turbulence
dt
Impose a test function oU in A and solve for the steady
Reynolds stress using perturbation covariance C



Structural Instability of a Turbulent State

Consider B-plane turbulence with isotropic stochastic excitation maintaining the
turbulence. There are no coherent Reynolds stresses. However, an imposed

test function jet breaks the symmetry of this turbulence resulting in upgradient
momentum fluxes:

vq induced by & U for NIF K=1-12

0.03
0.025} N for =0 Note:
e Fluxes are upgradient
0.02F / vq for p=10 | (opposite to gddy diffus_ion).
/ e Jet acceleration is maximum
0.015 / for /=0 (opposite to wave
* radiation and vorticity mixing
001F theories for jet formation).
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Jet formation instability is inherent in isotropic turbulence

First form the perturbation SSD equations around an
equilibrium turbulent state, (U, C,).

Linear function of 6C

/
el & Vv
7 4 )sc
doC
—— = BAC, + C5A) +AU)SC + 5CAT(U,)

Then obtain the eigenmodes and growth rate of the jet forming
instability (6U;, 6C;)e”"



Jet formation instability is inherent to isotropic turbulence

* When the background turbulence is sufficiently strong the coherent jet
forming Reynolds stresses exceed jet damping resulting in a linear jet
formation instability and eventually emergence of a nonlinearly
equilibrated finite amplitude coherent jet in the nonlinear SSD.

e This jet formation instability is distinct from hydrodynamic instability. Jets
arise from interaction between the mean flow and the perturbation
covariance which produce a structural bifurcation of the statistical state
with no counterpart in the 2D N-S equations expressed using state
variables.



Unstable Emergent Jet Structure
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The same jet formation
instability is obtained in NL,
(DNS), QL (quasilinear) and

SSD dynamics
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Figure 6.2. Zonal winds vs. latitude in 1979 and 2000. The
dashed line is from Voyager (Limaye 1986) and the solid line
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is from Cassini (Porco et al. 2003).
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Jupiter’s 23" N Jet
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Winds from HST images (error bars represent the standard deviation of the measurements)
(Sanchez-Levega etal. (2008))



Jupiter’s 23" N Jet Compared with SSD Equilibrium
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Conclusions

The Fundamental dynamics of turbulence is revealed only when the dynamics
is written using statistical variables (in SSD form).

Excepting only IHT, turbulence is essentially linear (i.e. quasilinear) as is
revealed when the dynamics is written using statistical variables (in SSD form).

Coherent structures (jets, layers) arise as linear instabilities only when the
dynamics is written using statistical variables (in SSD form).

Nonlinear equilibria proceeding from unstable modes of the SSD comprise
analytic solution of their associated turbulence problem.



