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I am an old man now, and when I die and go to heaven there are two matters 
on which I hope for enlightenment. One is quantum electrodynamics, and the 
other is the turbulent motion of fluids. And about the former I am rather 
optimistic.
  Horace Lamb (1932)



Figure 5.1: Isosurfaces of the the velocity gradient tensor used to visualize structures 
in computation of isotropic homogeneous 3D turbulence. The yellow surfaces rep-
resent flow regions with stable focus/stretching topology while the blue outlines of 
the isosurfaces show regions with unstable focus/contracting topology. 1283 simula-
tion with Taylor Reynolds number = 70.9. (Andrew Ooi, University of Melbourne, 
Australia, 2004, http://www.mame.mu.oz.au/fluids/). 
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Image courtesy of Andrew Ooi. Used with permission.

• Concentrating on isotropic homogeneous 
turbulence was a strategic error in the history of 
the science of fluid dynamics.

• The reason is IHT is essentially, intrinsically and 
irreducibly nonlinear so it is difficult to make 
analytical progress. 

• Remarkably, the turbulent systems of primary 
practical interest are essentially linear and admit 
analytic solution. 

• The reason for this linearity is that turbulence in 
pipes and channels, in the atmospheric boundary 
layer, baroclinic turbulence in the Earth’s 
midlatitude jets, turbulent jets in the gaseous 
planets, drift wave turbulence in magnetic 
confinement devices etc. are characterized by 
strong shear.

• Linearizing about this shear results in a quasilinear 
dynamics that allows analytic solution for the 
statistical equilibrium turbulent state.



Introduction
Zonalisation via Modulational Instability of Rossby/Drift Waves

Conclusions and Future Work

Zonal Jets in Atmospheres, Oceans and Plasmas
Charney-Hasegawa-Mima Model

Zonal Flows in Tokamaks

ITER
Plasma turbulence (L. Vil-
lard)

Sergey Nazarenko zonal flows

Jovian jets Earth’s polar front jet

jets in tokamaks jets in shear flow turbulence



In The Theory of Sound

(1877) John William Strutt,
3rd Baron Rayleigh advanced
the method of normal mode
stability analysis.

In On the stability of steady

and of periodic fluid motion

(1887) William Thomson, 1st
Baron Kelvin of Largs ad-
vanced the method of con-
vected coordinates for non-
modal stability analysis.

Perturbation Dynamics and Turbulence Theory

• If the turbulence problems of interest are 
essentially linear why was this not immediately 
recognized?

• The reason is that solutions for the turbulent 
state were sought as eigenmodes of stationary 
states in the linearized N-S equations.

• However, this application of Rayleigh’s method 
fails to identify the entire manifold of modes that 
are responsible for establishing and sustaining 
turbulence.

• In fact, the structures that sustain and regulate 
turbulence do arise as instabilities, but not in 
the linearized N-S equations.



The turbulence problem has analytical solution only when 
the N-S equations are expressed using statistical variables 
(means and moments of velocity) rather than the state 
variables (velocity). 
The approach to studying turbulence based on statistical 
state dynamics is reviewed here:

Statistical State Dynamics (SSD) underlies turbulence

F & Ioannou, (2019): Statistical State Dynamics:  A New Perspective on 
Turbulence in Shear Flow. Zonal Jets Phenomenology, Genesis, and Physics. Ed. Boris 

Galpirin and Peter L. Read. Cambridge University Press 2019, 380-400.



The Lorentz force:

~F = q~V ⇥ ~B

contains the Tokamak plasma.

The Coriolis force:

~F = 2~V ⇥ ~⌦

supports the Earth’s P-E
thermal contrast.

ITER and the Jet Stream

F & Ioannou, 2009: A Stochastic Structural Stability Theory model of the drift wave-zonal flow system., Physics of Plasmas, 16, 112903

F & Ioannou,  (2009):  A Theory of Baroclinic Turbulence.  J. Atmos. Sci. , 66, 2445-2454 . J. Atmos. Sci.



Layering in Stratified Flow
N2U

DNS

SSD

Fitzgerald, J. G., & F (2018). Statistical state dynamics of vertically sheared horizontal flows in two-dimensional Stratified turbulence. 
Journal of Fluid Dynamics , 854, 544-590.

SSD buoyancy layers

NL buoyancy layers



Some background has been given on the problem of the emergence of 
zonal winds in the gaseous planets so we will build on that for our example.



Jupiter’s Winds are Emergent Jets



Jupiter’s Winds are Emergent Jets



Jupiter’s Winds are Steady 

Winds from Cassini (1997; black); Voyager 2 (1979; red) (Porco et al., 2003; 
Limaye, 1986)



Jupiter’s Winds are Eddy 
Driven

434 C. Salyk et al. / Icarus 185 (2006) 430–442

Fig. 4. ū and v̄ are plotted as a function of latitude for our nominal analysis.
Error bars are 2 standard deviations from the mean. For the ū plot, the error
bars are smaller than the box symbols, though actual errors may be larger due
to systematics. ū is also compared with the zonal velocity profile of Porco et al.
(2003). There is good agreement between the two curves, except for discrepan-
cies at the sharpest peaks, due to our relatively larger grid spacing.

as well as the variation of zonal velocity with latitude:

(4)
(

dū

dy

)

n

= ūn+1 − ūn−1

yn+1 − yn−1
.

4. Results

4.1. Rate of energy conversion

Fig. 4 shows ū and v̄ as a function of latitude for our nom-
inal analysis, with ū overplotted on the zonal velocity profile
of Porco et al. (2003). There is fairly good agreement between
these two curves, despite the fact that Porco et al. used a line-by-
line correlation method, rather than a feature tracker, to deter-
mine ū. The largest differences between the two curves exist at
the most extreme ū values where our wind profile is smoothed
slightly due to our coarser grid resolution. v̄ is slightly offset
from zero, with a mean value of −0.2 m s−1. Although this may
be a real effect, a non-zero v̄ has not been noted by previous
researchers and could be induced by a small navigation error,
which we discuss further in Section 5.7.

Fig. 5 shows dū/dy, u′v′, and their product as a function
of latitude. We note a positive correlation between the signs of
these two parameters, implying a flow of energy from eddies to
zonal flow. The correlation coefficient of the bottom curves is
∼0.86.

Following the convention of Holton (2004), the rate of trans-
fer of eddy kinetic energy (K ′) to zonal mean kinetic energy
(K̄) is defined as

(5)[K ′ • K̄] ≡
〈
ρu′v′ dū

dy

〉
,

where 〈 〉 represents a global average. Our measurements allow
us to estimate the product u′v′ dū/dy, which, when averaged

Fig. 5. On the bottom plot, u′v′ and dū/dy are plotted together as a function
of latitude. u′v′, corresponding to the right of the two axes, is plotted as dots
with error bars corresponding to 2 standard deviations from the mean. dū/dy

is shown as a solid line and corresponds to the left of the two axes. There is a
distinct positive correlation between the two curves, and their correlation coef-
ficient is 0.86. The top plot shows the product u′v′ × dū/dy.

Table 1

Type of analysis Correlation between
dū/dy and u′v′

Power/mass
(10−5 W kg−1)

2σ error

Conservative 0.86 7.1 0.66
Conservative, no ovals 0.87 7.1 0.76
Conservative, binned 0.87 7.3 0.59
More complete 0.88 12.3 0.59
More complete, no ovals 0.87 12.3 0.80
More complete, binned 0.87 12.4 0.70
Two rotations, cons. 0.74 6.0 1.4
Artificial shear 0.56 0.33 0.37
Ingersoll et al. (1981) 0.4–0.5 15–30

over the surface yields the power per unit mass transferred from
eddies to zonal mean flow. Letting n refer to a given latitude bin
and N be the total number of bins, this power per unit mass is
given by

(6)power/mass ≈ 1
∑N

n=1 cosφn

N∑

n=1

(
dū

dy

)

n

(u′v′ )n cosφn.

For our nominal analysis, this quantity is equal to 7.1 ×
10−5 W kg−1, compared to a value of 15–30 × 10−5 W kg−1

found by Ingersoll et al. (1981). We performed several, slightly
different analyses, which will be discussed in Section 5, and the
power per unit mass derived from all analyses can be viewed in
Table 1.

In order to estimate the total power transfer from eddies to
zonal flow, it is necessary to know the amount of mass involved
in the transfer. Multiplying power per unit mass by the mass
per unit area dP/g, one can obtain the total power per unit area
transferred—a number that can be compared to the total power
per unit area emitted by the planet. Unfortunately, the mass in-
volved in the transfer is not well constrained; dP is uncertain
to perhaps an order of magnitude. At a minimum, the trans-
fer includes the main visible cloud deck, which has been esti-
mated to depths just short of 1 bar (Atreya and Donahue, 1979;
Kunde et al., 1982; Banfield et al., 1998) or to between 1 and

Momentum flux and shear are correlated with coefficient 0.86. (Salyk et al., 
2006)



• midlatitude beta-plane with x, y the zonal and the meridional coordinates.

• streamfunction,  , is the state variable with u = �@y and v = @x .

• total vorticity is q + 2⌦+ �y, with q = r2 the relative and 2⌦+ �y the
planetary component.

• dynamics is governed by the barotropic vorticity equation:

@tq + u@xq + v@yq + �v = �rq � ⌫4�
2q +

p
✏F .



Form the Zonal Mean/Perturbation Form of the Vorticity Equation:
Zonal average to obtain coupled equations for the mean flow and the perturba-
tions:

@tU = v0q0 � rU

@tq
0 = �U@xq

0 + (Uyy � �)@x 
0 � rq0 � ⌫4r2q0 + Fe + ✏1/2F

Drop the nonlinear term in the perturbation equation, Fe, to obtain the quasi-
linear equations.

Linear perturbation operator ≡ A

stochastic 
excitation 

perturbation 
nonlinearity



Zonal average to obtain coupled equations for the mean flow and the perturba-
tions:

@tU = v0q0 � rU

@tq
0 = �U@xq

0 + (Uyy � �)@x 
0 � rq0 � ⌫4r2q0 + Fe + ✏1/2F

Drop the nonlinear term in the perturbation equation, Fe, to obtain the quasi-
linear equations.

X

• Rewriting the NL vorticity equation in mean/perturbation form provides the 
opportunity to isolate, retain or eliminate, mechanisms in the vorticity equation.

• Eliminating the perturbation nonlinearity by forming the QL equation eliminates 
both the mechanism of the arrested cascade as well as the mechanism of 
wave breaking i.e. the “surf zone” jet formation mechanism.

≡ A(U)Linear perturbation operator

perturbation 
nonlinearity 
(ignored)

stochastic 
excitation 

Note two properties of the QL vorticity equation:

Drop the nonlinearity in the perturbation vorticity equation to 
form the quasi-linear (QL) vorticity equation:



Under stochastic excitation of isotropic turbulence NL and QL 
dynamics produce indistinguishable jets 

(NB: despite QL supporting neither a cascade nor wave breaking)
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• The QL system affords insight into the dynamics of -plane turbulence but 
even more insight is obtained by formulating the associated SSD.

• The associated SSD follows from replacing the perturbation dynamics of 
QL by its associated ensemble mean dynamics.

• Stable fixed point solutions of the SSD for a turbulent system correspond 
to analytic solution of the turbulence problem for that system.

β

From QL dynamics to SSD



Obtaining the SSD equation

The nonlinear system governing the coupled evolution of the zonal mean flow
and the perturbation field under the action of a single realization of the excita-
tion is:

d 

dt
= A(U) + ⌘(t)

dU

dt
= �k

2
diag(Im(  †)�†)� r(U)

In the limit of a large number of independent realizations of the excitation
acting simultaneously on the mean jet the individual time dependent forcing of
the mean flow is replaced by the ensemble mean of these forcings (central limit
theorem) and this nonlinear coupled system becomes autonomous:

dC

dt
= AC + CA† + I

dU

dt
= �k

2
diag(Im(C)�†)� rU

zonal mean jet equation

ensemble mean perturbation 
covariance equation

• The SSD governs the dynamics of the statistical moment evolution.
• The SSD has the same dynamical restriction as QL dynamics while in 

addition it has zero fluctuations.  This allows exact, analytical, fixed point 
solution for the statistical state of a turbulent system to be obtained - which 
is what is meant by solving a turbulence problem.

dC
dt

= AC + CA + Q

dU
dt

= v′ q′ − rU

 function of C

excitation spatial covariance



The test function example

Use the ensemble mean perturbation covariance to obtain the steady 
response to a test function imposed on the turbulence:

X

Impose a test function  in  and solve for the steady 
Reynolds stress using perturbation covariance 

δU A
C

dC
dt

= A(δU)C + CA(δU) + Q

Spatial covariance of the 
stochastic excitation 
maintaining a background of 
isotropic turbulence



Structural Instability of a Turbulent State

Consider β-plane turbulence with isotropic stochastic excitation maintaining the 
turbulence.  There are no coherent Reynolds stresses.  However, an imposed 
test function jet breaks the symmetry of this turbulence resulting in upgradient 
momentum fluxes:

Note:
• Fluxes are upgradient 

(opposite to eddy diffusion).
• Jet acceleration is maximum 

for =0 (opposite to wave 
radiation and vorticity mixing 
theories for jet formation).

β



dδU
dt

= − rδU + (v′ q′ )δC

dδC
dt

= (δA)Ce + Ce(δA)† + A(Ue)δC + δCA†(Ue)

Jet formation instability is inherent in isotropic turbulence

First form the perturbation SSD equations around an 
equilibrium turbulent state, .(Ue, Ce)

Then obtain the eigenmodes and growth rate of the jet forming 
instability  (δUi, δCi)eσit

Linear function of δC



• When the background turbulence is sufficiently strong the coherent jet 
forming Reynolds stresses exceed jet damping resulting in a linear jet 
formation instability and eventually emergence of a nonlinearly 
equilibrated finite amplitude coherent jet in the nonlinear SSD. 

• This jet formation instability is distinct from hydrodynamic instability.  Jets 
arise from interaction between the mean flow and the perturbation 
covariance which produce a structural bifurcation of the statistical state 
with no counterpart in the 2D N-S equations expressed using state 
variables.

Jet formation instability is inherent to isotropic turbulence



Unstable Emergent Jet Structure

The most unstable eigenfunction at eddy excitation ⇥ = 1.5 mW/kg. Shown is
the mean velocity component, �U , of the eigenfunction (solid) and the momen-
tum flux divergence from the perturbation covariance, �C, (dashed).
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Figure 6.2. Zonal winds vs. latitude in 1979 and 2000. The
dashed line is from Voyager (Limaye 1986) and the solid line
is from Cassini (Porco et al. 2003).
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Jupiter’s  N Jet Compared with SSD Equilibrium230

No free parameter



Conclusions

• The Fundamental dynamics of turbulence is revealed only when the dynamics 
is written using statistical variables (in SSD form).

• Excepting only IHT,  turbulence is essentially linear (i.e. quasilinear) as is 
revealed when the dynamics is written using statistical variables (in SSD form).

• Coherent structures (jets, layers) arise as linear instabilities only when the 
dynamics is written using statistical variables (in SSD form).

• Nonlinear equilibria proceeding from unstable modes of the SSD comprise 
analytic solution of their associated turbulence problem.


