
Dawn of the Zombie
Vortex Instability

Dr. Joseph Barranco
Department of Physics & Astronomy

San Francisco State University
with

Philip Marcus (U.C. Berkeley)

Kavli Institute for 
Theoretical Physics:
Layering in Atmospheres, 
Oceans, and Plasmas
March 3, 2021

Grant support from NSF-AST, computational resources from NSF-XSEDE



TW Hydrae 2016
Credit: S. Andrews (CfA), 
ALMA (ESO/NAOJ/NRAO)

Credit: Deborah 
Padgett, IPAC/Caltech, 
1999

How does gas spiral onto central 
protostar?

How do dust grains agglomerate to 
form planetesimals?
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Protoplanetary Disks by the numbers…

☼ Size: few light-days across
☼ Aspect ratio 𝝳∼H/R∼0.03
☼ Age: 5-20 million years
☼ 72% H2, 26% He (by mass), 1% other gas, 1% dust
☼ ρ ≈ 10-6 kg/m3 in midplane at 1 au
☼ cs ≈ 1 km/s, vorb = 30 km/s at 1 au for 1 M☉
☼ λmfp ≈ 1 cm for gas molecules; Re ≈ 1014

☼ dust particle size: μm to cm
☼ Average separation of dust particles: few cm
☼ In well-mixed state, in volume (100 m)3, there is 1 kg 

of gas and few billion dust grains w/ size μm to cm



MHD “Dead” Zones

Gammie (1996)
Armitage (2011)



Jupiter’s Great Red Spot

In nature, vortices
thrive where there is:

» Rapid rotation
» Intense shear
» Strong stratification



Jovian Vortices Versus Protoplanetary Disk Vortices

Timescale GRS PPD

tvor≡4p/w 8 days ≈ 1 orbit

torb≡2p/Ω 10 hours ≈ 1 orbit

tBV≡2p/wBV 6 minutes ≈ 1 orbit

Ro ≡ torb/tvor 0.18 ≈ 1

Fr ≡ tBV/tvor 5 X 10-4 ≈ 1

Ri ≡ 1/Fr2 4 X 106 ≈ 1



Shearing Box Simulations

ßOrbital direction
y≡r0(φ-ΩKt)

Radial direction
x≡r-r0

Box rotates with gas at radius r0.
Keplerian differential rotation à Linear Shear
Vy = -(3/2)ΩKx



Hydrodynamic Equations
Consider a small box of gas in orbit around protostar.  In this 
rotating reference frame, gas flow appears as a linear shear:

ß
Hydrostatic 
balance in 
vertical 
direction.

Stratification 
measured by 
potential 
temperature 
profile and the 
Brunt-Väisälä
frequency.

Euler equations with anelastic approx. in rotating reference frame:
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Because the vorticity is 
divergence free, vortex lines 
cannot end in the fluid but must 
form closed loops or go off to 
infinity! (Like magnetic field 
lines.)



Short, hurricane-like vortex

Barranco & Marcus (2005, 2006)



Short, hurricane-like vortex

Barranco & Marcus (2005, 2006)



Dawn of the Zombie Vortex Instability

Marcus et al. 2013, 2015, 2016)



Baroclinic Critical Layers 

See Wang & Balmforth (2020): “Nonlinear Dynamics of Forced Baroclinic Layers”



Nonlinear trigger: Vorticity on small scale



Why was instability missed for 30 years?

☼ Much of the early work on PPD 
dynamics ignored stratification.  There 
was the belief that if a rotating flow is 
stable, a stratified rotating flow is even 
more stable (FALSE!)

☼ Need high resolution to resolve the very 
thin baroclinic critical layers.

☼ Instability is nonlinear and requires a 
broad spectrum of initial perturbations.

☼ Nonlinear evolution takes thousands of 
orbital periods; very few early 
calculations were ever evolved that long.



Dawn of the Zombie Vortex Instability

Marcus et al. (2013)



Dawn of the Zombie Vortex Instability

Marcus et al. (2013)



ZVI with non-uniform stratification

Barranco et al. (2018)
See also: Marcus et al. 2015, 2016)



ZVI with non-uniform stratification

Barranco et al. (2018)
See also: Marcus et al. 2015, 2016)





ZVI with non-uniform stratification

Barranco et al. (2018), See also: Marcus et al. 2015, 2016)

Turbulent bursts with period of 125 orbits!



ZVI with non-uniform stratification

Barranco et al. (2018)
See also: Marcus et al. 2015, 2016)



ZVI with non-uniform stratification



Understanding Cooling Times

Gas and dust exchange energy via collisions, 
dust radiates energy in the infrared



Understanding Cooling Times

Spiegel (1957)

Infrared photon mean free path due to dust opacity:

Optical depth 𝝉= 𝝆𝜿ℓ
Gas density 𝝆
Opacity 𝜿
Physical length ℓ

𝝆𝜿 = nd𝜋a2QIR
Emissivity QIR ∝ aT



Understanding Cooling Times

Response time ∼ thermal energy content / energy exchange rate

Rate of energy exchange between gas and dust via collisions:



Understanding Cooling Times
Net power (absorbed minus emitted) by dust in IR:



ZVI with Cooling



Cooling Times with No Settling



Cooling Times with Settling



Challenges

☼ “Local” simulations are good for identifying mechanisms for 
instability and following evolution into nonlinear and turbulent state.

☼ But how do we connect “local” simulations with “global” simulations 
without “smearing” out the resolution necessary for capturing 
instability processes and turbulent mixing?

☼ Need more development of subgrid scale models for evolution of dust 
size distribution that can be implemented in local and global 
simulations (e.g. Estrada et al. 2015, Tamfal et al. 2018).

☼ Simulations should include spatio-temporal evolution of cooling 
times. Evolution of dust size distribution, global spatial evolution of 
dust via vertical settling, radial migration and turbulent mixing all 
depend on hydrodynamic and MHD instabilities, yet the prevalence 
and robustness of these instabilities depend on cooling rates that are 
set by dust size distribution!



Dimits shift, avalanche-like bursts, and solitary
propagating structures in HasegawaWakatani
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DRIFT WAVES AND DRIFT INSTABILITY

Cartoon picture by G. Hammett
(PPPL)

Kinetic simulation by J. Candy
and R. Waltz (GA)



TURBULENCE DRIVEN TRANSPORT

I Random walk by eddy decorrelation

I D ∝ L2
c
τc

τc ∝ Lc
vE
∝ LcB

E ∝
L2

c B
φ

D ∝ φ

B
∝ T

B

I D inversely proportional with B.
Unfortunate, but expected.

I D proportional with T.
Unfortunate, and unexpected: as the plasma
gets hotter, confinement degrades

I Transport dominated by turbulent driven
transport

I “Low confinement” mode, experimentally
verified

Heuristic picture from Troy Carter (UCLA)



A LUCKY DISCOVERY

I “High confinement”
regime discovered as
input power is
increased1

I Edge transport barrier,
with large gradients2

I Strong, cross-field
rotation localized in
the edge observed 3

1F. Wagner et al., Physical Review Letters 49 1408 (1982)
2L. Schmitz et al. Nuclear Fusion 52 023003 (2012)
3K.H. Burrell, Physics of Plasmas 4, 1499 (1997)



SHEAR SUPPRESSION OF TURBULENCE

Movie 1
Movie 2

I Sheared flow “breaks up” turbulent eddies, smaller eddies mean
smaller diffusive step size 4

I Fundamental role of zonal flows

4Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, R. B. White, Science 281, 1835 (1998)



NONLINEAR UPSHIFT OF CRITICAL GRADIENT

Nonlinear upshift of the critical gradient for the existence of
significant transport, a.k.a. “Dimits shift” 5,6.

5A Dimits et al., Physics of Plasmas 7, 969 (2000)
6D.R. Mikkelsen and W. Dorland, Physical Review Letters 101, 135003 (2008)



BURSTY TRANSPORT & AVALANCHES

I Low-transport regime characterized by nondiffusive, scale-free,
and avalanche mediated transport 7

7G. Dif-Pradalier et al., Physical Review E 82, 025401(R) (2010)
Tobias Görler et al., Physics of Plasmas 18, 056103 (2011)



BURSTY TRANSPORT & AVALANCHES

L. Villard et al., Plasma Physics and Controlled Fusion 55 (2013) 074017



BURSTY TRANSPORT & AVALANCHES (+ FERDINONS?)

P.G. Ivanov et al., Journal of Plasma Physics 86 855860502 (2020)



INTERMEZZO



SIMPLEST FLUID MODELS FOR ZONAL FLOWS

DYNAMICS

I Two popular models: Hasegawa-Mima and Hasegawa-Wakatani
I Models are NOT accurate for magnetic fusion experiments
I Shearless slab geometry
I Still attractive for their simplicity

I Better understand drift instability – zonal flow mechanisms
I Fundamental properties of zonal flows

J.B. Parker and J.A. Krommes, Physics of Plasmas 20, 100703 (2013)



ELECTRON DYNAMICS - APPROXIMATIONS

I Adiabatic limit= zero resistivity
I Small mass⇒ neglect inertia
I Dynamics parallel to the magnetic field

eNE‖ = −∇‖pe

I Assume uniform temperature

∇‖
(

eϕ
Te

)
=
∇‖N

N
= ∇‖ ln

(
N
N0

)
⇒ N(x, y, t) = f (x, t) exp

(
eϕ
Te

)
Adiabatic electron response

I Write every quantity as a = a + ã with a = 1
Ly

∫ Ly
0 ady

N = n0(x, t) exp
(

eϕ̃
Te

)
≈ n0(x, t)(1 +

eϕ̃
Te

)



ELECTRON MASS CONSERVATION

I Mass conservation + Integration by parts:

∂N
∂t

=
∂ϕ

∂y
∂N
∂x
− ∂ϕ

∂x
∂N
∂y

⇒ ∂N
∂t

=
∂

∂x

(
1
Ly

∫ Ly

0
N
∂ϕ̃

∂y
dy
)

I Use ∂N
∂y = n0(x, t)∂ϕ̃∂y

∂N
∂t

= 0 No net radial electron flux

I Conclude:
⇒ N = n0(x)(1 + eϕ̃

Te
)

⇒ Solve for normalized density fluctuation n = ñ = ϕ̃



HASEGAWA-MIMA MODELS

∂q
∂t

+ J (ϕ, q)− κ∂ϕ̃
∂y

= 0 J(ϕ,q)=∂xϕ∂yq−∂yϕ∂xq , κ=− d ln n0
dx

Original Hasegawa-Mima model8: Potential vorticity: q = ∇2ϕ− ϕ
I No drift instability – turbulent forcing must be added externally

to observe emergence of zonal flows
I Not Galilean invariant for boosts in the y direction
I Unphysical net radial transport of electrons: ∂N/∂t 6= 0

Modified Hasegawa-Mima model9 Potential vorticity: q = ∇2ϕ− ϕ̃
I MHM model has desired Galilean invariance
I No net radial transport of electrons: ∂N/∂t = 0
I Stronger zonal flows observed
I Still no drift instability
8A. Hasegawa and K. Mima, Physics of Fluids 21 87 (1978)
9R.L. Dewar and R.F. Abdullatif in Frontiers in Turbulence and Coherent Structures

(World Scientific, 2007), pp. 415–430



IMPORTANCE OF PROPER ELECTRON TREATMENT

D. Qi and A.J. Majda, Chinese Annals of Mathematics, Series B 40, 869(2019)



HASEGAWA-WAKATANI MODELS
I Equation for potential vorticity q = ∇2ϕ− n

∂q
∂t

+ J (ϕ, q)− κ∂ϕ̃
∂y

= −D∆4q

∂n
∂t

+ J (ϕ,n) + κ
∂ϕ̃

∂y
=

{
α (ϕ− n)−D∆4n Original HW10

α (ϕ̃− ñ)−D∆4n Modified HW11

• Original HW: NOT Galilean invariant, hard to generate zonal
flows
•Modified HW: Galilean invariant, strong zonal flows

I Hasegawa-Mima limit: α→∞
I OHW: n→ ϕ, qOHW → ∇2ϕ− ϕ = qOHM

The OHW model converges to the OHM.
I MHW: ñ→ ϕ̃, qMHW → ∇2ϕ− ϕ̃− n 6= qMHM

The MHW model may not converge to the MHM model.
10A. Hasegawa and M. Wakatani, Physical Review Letters 50, 682 (1983)
11R. Numata, R. Ball, and R.L. Dewar, Physics of Plasmas 14, 102312 (2007)



A SUBTLE CONVERGENCE QUESTION

∂n
∂t

=
∂

∂x

(
1
Ly

∫ Ly

0
ñ
∂ϕ̃

∂y
dy
)

I If α =∞, ñ = ϕ̃⇒ ∂n
∂t = 0

I If α is finite, no obvious bound on ∂n
∂t



FLUX-BALANCED HASEGAWA-WATANI MODEL 12, 13

I Fundamental quantities are qb = ∇2ϕ− ñ and n

∂qb

∂t
+ J
(
ϕ, qb

)
− κ∂ϕ̃

∂y
= −D∆4qb

∂n
∂t

+ J (ϕ,n) + κ
∂ϕ̃

∂y
= α (ϕ̃− ñ)−D∆4n

I The BHW model converges to the MHM model in the
appropriate limit, by construction

I MHW model for comparison:

∂qb

∂t
+ J
(
ϕ, qb

)
+
∂
(

ũñ
)

∂x
−
(
κ− ∂n

∂x

)
∂ϕ̃

∂y
= D∆qb

I Linear drift instability identical in both models
I Nonlinear dynamics very different
12A.J. Majda, D. Qi, and A.J. Cerfon, Physics of Plasmas 25, 102307 (2018)
13D. Qi, A.J. Majda, and A.J. Cerfon, Physics of Plasmas 26, 082303 (2019)



DIFFERENCES BETWEEN THE MHW AND BHW
MODELS

I Robust zonal flows: In the BHW model, zonal structures
observed even in the highly resistive limit12,13

BHW model
16
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Figure 5: Snapshots of the ion vorticity ⇣ = �' at the final time of the simulation for the bHW model (top row)
and the mHW model (bottom row). For each figure  = 0.5, and each column corresponds to a different value of ↵:
↵ = 0.01, 0.1, 0.5 from left to right. Notice the clear zonally elongated structures obtained in the bHW model for

↵ = 0.01 in comparison with the homogeneous field in the mHW model.

bHW model maintains jet structures for a wide range of values of the adiabaticity parameter ↵, throughout the
transition from a regime with dominant zonal jets (large ↵) to the strong drift wave turbulence regime (small ↵). For
small values of ↵, the jets are more turbulent and shift in time, but the anisotropic zonal dynamics persists. This is
in stark contrast to the mHW model, which loses the jets as ↵ ! 0, as a regime with fully homogeneous turbulence
and strong vortices sets in. Because of the persistence of the zonal jets, the particle flux is always smaller in the bHW
model than in the mHW model for small values of ↵. Physically, the unbalanced density flux in the mHW model is
responsible for the highly turbulent vorticity and strong particle transport in the limit of small ↵.

In the large ↵ regime, we highlight another critical difference between the mHW and the bHW models, namely the
fact that in the bHW model, both the zonal mean flow and the fluctuations have a much larger variability than in the
mHW model. To demonstrate this, in Figure 6 we plot the time series of the zonal mean velocity field v = @'/@x for
↵ = 0.5, which corresponds to a strong zonal jet regime. The jets generated in the bHW model have large amplitude
variations in time, whereas the zonal velocity in the mHW model is mostly steady in time with an almost constant
jet amplitude.

B. Role of dissipation terms

Thus far, we have always turned off ion Landau damping by setting C = 0, and set the dissipation coefficients D
and µ to be equal, with µ = D = 5 ⇥ 10�4. In this last section, we take a closer look at the right-hand side of Eq.
(6a) by dissociating µ and D and considering finite values for C. Specifically, we study the consequences of increasing
the values of µ to µ = 2 ⇥ 10�3 while keeping the other parameters to their original values, and of increasing D to
D = 2 ⇥ 10�3 while keeping the other parameters to their original values. In addition, we test a small value for C,
namely C = 0.01. Since Landau damping mostly acts on the largest scales, we focus in this section on the regime
corresponding to ↵ = 0.5, = 0.5, where there exist strong but fluctuating large-scale zonal mean modes.

Figure 7 provides a summary of our main results. The top left panel shows time series of the total energy in the
system for the different values of µ, D and C considered in this section. The blue red, and yellow curves correspond

MHW model
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Figure 5: Snapshots of the ion vorticity ⇣ = �' at the final time of the simulation for the bHW model (top row)
and the mHW model (bottom row). For each figure  = 0.5, and each column corresponds to a different value of ↵:
↵ = 0.01, 0.1, 0.5 from left to right. Notice the clear zonally elongated structures obtained in the bHW model for

↵ = 0.01 in comparison with the homogeneous field in the mHW model.

bHW model maintains jet structures for a wide range of values of the adiabaticity parameter ↵, throughout the
transition from a regime with dominant zonal jets (large ↵) to the strong drift wave turbulence regime (small ↵). For
small values of ↵, the jets are more turbulent and shift in time, but the anisotropic zonal dynamics persists. This is
in stark contrast to the mHW model, which loses the jets as ↵ ! 0, as a regime with fully homogeneous turbulence
and strong vortices sets in. Because of the persistence of the zonal jets, the particle flux is always smaller in the bHW
model than in the mHW model for small values of ↵. Physically, the unbalanced density flux in the mHW model is
responsible for the highly turbulent vorticity and strong particle transport in the limit of small ↵.

In the large ↵ regime, we highlight another critical difference between the mHW and the bHW models, namely the
fact that in the bHW model, both the zonal mean flow and the fluctuations have a much larger variability than in the
mHW model. To demonstrate this, in Figure 6 we plot the time series of the zonal mean velocity field v = @'/@x for
↵ = 0.5, which corresponds to a strong zonal jet regime. The jets generated in the bHW model have large amplitude
variations in time, whereas the zonal velocity in the mHW model is mostly steady in time with an almost constant
jet amplitude.

B. Role of dissipation terms

Thus far, we have always turned off ion Landau damping by setting C = 0, and set the dissipation coefficients D
and µ to be equal, with µ = D = 5 ⇥ 10�4. In this last section, we take a closer look at the right-hand side of Eq.
(6a) by dissociating µ and D and considering finite values for C. Specifically, we study the consequences of increasing
the values of µ to µ = 2 ⇥ 10�3 while keeping the other parameters to their original values, and of increasing D to
D = 2 ⇥ 10�3 while keeping the other parameters to their original values. In addition, we test a small value for C,
namely C = 0.01. Since Landau damping mostly acts on the largest scales, we focus in this section on the regime
corresponding to ↵ = 0.5, = 0.5, where there exist strong but fluctuating large-scale zonal mean modes.

Figure 7 provides a summary of our main results. The top left panel shows time series of the total energy in the
system for the different values of µ, D and C considered in this section. The blue red, and yellow curves correspond



DIFFERENCES BETWEEN THE MHW AND BHW
MODELS
Zonal jets are more robust, but also have larger variability12,13
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DIMITS SHIFT IN THE BHW MODEL, NOT IN THE

MHW MODEL14
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14D. Qi, A.J. Majda, and A.J. Cerfon, Physics of Plasmas 27, 102304 (2020)



RADIALLY PROPAGATING COHERENT STRUCTURES IN

THE BHW MODEL, NOT IN THE MHW MODEL14

BHW

MHW



COHERENT STRUCTURES PROPAGATE IN REGIONS OF

HIGH SHEAR14

BHW Channel Geometry

BHW Periodic boundary conditions



SUMMARY

Transport in tokamaks may be separated into an organized Dimits
regime and a strongly turbulent regime.

In the Dimits regime, one oberves periodic bursts in the particle/heat
fluxes, with avalanches and coherent solitary structures.

We have presented the only known Hasegawa-Wakatani model with
a Dimits shift, avalanches, and coherent solitary structures.

The key to observing these phenomena in the Hasegawa-Wakatani
framework is the proper treatment of the parallel electron dynamics.

Strong velocity shear is required for the existence of radially
propagating coherent solitary structures.
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Motivation

Shear-flow instabilities drive turbulence, enhance mixing

Below: example of turbulence driven by unstable shear flow

→ enhances mixing beyond diffusion
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- Turbulent transport: difficult to predict

- Natural systems (e.g. stars) often too complex for accurate direct
numerical simulations

→ One motivation for this work: need reduced models, tools for
predicting behavior when simulations impractical or impossible

2 / 21



Motivation

MHD KH: weak/moderate B0 enhances turbulence despite
partially stabilizing instability

Palotti et al. 2008: for B = 0 (left), large-scale vortices dominate KH

B 6= 0 (right) increases small-scale fluctuations despite stabilizing influence

3 / 21



Motivation

MHD KH: turbulent transport, layer broadening rate
increase with field strength

Mak et al. 2017: as B0 increases (left to right), turbulent momentum
transport increases → layer broadens faster

This work: pursue explanation for this counter-intuitive trend → might
lead to reduced models

Specifically, explore role of stable modes, variation with B0

4 / 21



Stable modes: overview

Some fluctuations return energy to the driving shear flow

Inviscid shear flows: for every unstable mode there exists a “conjugate”
stable mode (tied to PT symmetry, see Qin et al. arXiv:2010.09620)

Fraser et al. Phys. Plasmas (2017)

Unstable modes:
driven by shear
flow
Stable modes:
put energy back

Both types
present in random
perturbations

Unstable modes: u(x, z, t) ∼ u1(z)e
ikxxeγt → linear growth

Stable modes: u(x, z, t) ∼ u2(z)e
ikxxe−γt → linear decay

5 / 21



Stable modes: overview

Signatures of stable modes exist in shear flow experiments

Note: energy transfer to/from perturbations ↔ momentum transport
down/up the gradient (Reynolds stress) ↔ layer broadens/shrinks

Shear flow
experiments: layer
broadens first,
then sometimes
shrinks

(Ho & Huerre
Ann. Rev. Fl. Mech.
1984)

6 / 21



Stable modes: DNS

2D Kolmogorov flow

Fraser et al. (2018): examine stable modes in 2D Kolmogorov-like flow
(V0 ∼ cos(keqx x)ŷ)
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Stable modes: DNS

From DNS results, calculate mode amplitudes βj

At each ky, t, expand state φ̂ in basis of eigenmodes φj:

φNL(x, y, t) =
∑

ky
φ̂(x, ky , t)e

ikyy → φ̂ =
∑

j βj(t)φj(x)
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Left: evolution of
βj(t) consistent
with previous
work: β2 excited
by β1β1 nonlinear
interactions (think
GQL)

Right: continuum
modes (γ = 0)
excited too

|β2/β1| ≈ 1 in saturation ⇒ significant energy transfer back to mean flow,
β2 important in saturating the instability
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Stable modes: DNS

φ1, φ2 alone describe some fluctuations well
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models: φ ≈ φ1 at large scales
Here: including φ2 yields
significant improvements
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φ ≈ β1φ1 + β2φ2 captures Reynolds stress here → what about MHD?
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Back to MHD

Shear layer with flow-aligned B0

Simulate a 2D, incompressible, unstratified shear layer in MHD with
flow-aligned B0 in Dedalus (dedalus-project.org):

ρ

(
∂

∂t
+ v · ∇

)

v = −∇p+
1

c
J×B+ ν∇2v

∂

∂t
B−∇× (v ×B) = η∇2B

∇ · v = 0

−1 0 1

U(z)

−10

0

10

z

−10 0 10

x

−10

0

10 Uniform B0 Equilibrium flow:
V0 = U(z)x̂ = U0 tanh(z/d)x̂
Equilibrium field: B0 = B0x̂

Non-dimensionalize in terms of
d, U0, B0
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Back to MHD

Model details

Non-dimensionalizing and setting v = ŷ×∇φ, B = ŷ ×∇ψ yields:

∂

∂t
∇2φ+

{
∇2φ, φ

}
=

1

M2

A

{
∇2ψ,ψ

}
+

1

Re
∇4φ

∂

∂t
ψ = {φ,ψ} +

1

Rm
∇2ψ

(where {f, g} ≡ ∂xf∂zg − ∂zg∂xf)

Three free parameters: MA ≡ U0/vA ∝ U0/B0,
Re ≡ U0d/ν,
Rm ≡ U0d/η

Typically use Re = Rm = 500
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Back to MHD

Nonlinear simulations: stronger B0 enhances layer
broadening, eliminates phases of layer shrinking

Assess layer broadening via kinetic energy of the mean flow:
Layer broadening ↔ reduced KEkx=0

0 50 100 150 200

t

0

100

200

300

400

K
E
k
x
=
0

MA = 40

MA = 25

MA = 20

MA = 15

MA = 10

Energy in mean flow
decreases faster with
stronger magnetic fields

Note local minima in KEkx=0 → negative eddy viscosity → stable mode
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Back to MHD

Ideal (ν, η = 0) system includes the same stable modes

−10 0 10

−10

0

10

z

φ1, unstable mode
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At each unstable kx, one unstable
mode φ1, ψ1 and conjugate stable
mode φ2, ψ2 with γ2 = −γ1

φ1: draws energy from U(z) → down-gradient Reynolds/Maxwell stresses
φ2: transfers energy back to U(z) → counter-gradient stresses
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Back to MHD

Calculate eigenmode amplitudes βj from simulations
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From simulations, calculate
eigenmode amplitudes βj
First take FFT: φ =

∑

kx
φ̂eikxx

Then expand in φj basis:

φ̂ =
∑

j βjφj

0 20 40 60

t

10−3

10−2

10−1

100

Eigenmode amplitudes

Unstable mode

Stable mode

Use to connect Reynolds stress reduction/reversal to stable mode activity
(Also tested with eigenmodes of mean flow 〈U〉x rather than initial U0)
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Back to MHD

Unstable, stable mode amplitudes relate directly to
Reynolds stress

Consider Reynolds stress τu ≡ 〈uxuz〉 at z = 0

0 25 50 75 100 125 150 175 200

t

−10

−5

0

5

kx = 0.2

|β2|
2 − |β1|

2

c× τu(z = 0)

MA = 40

MA = 25

MA = 15

0 25 50 75 100 125 150 175 200

t

−1.5

−1.0

−0.5

0.0

0.5

1.0

kx = 0.4

|β2|
2 − |β1|

2 yields Reynolds stress at z = 0 almost exactly
⇒ Trends in τu with B0 can be understood in terms of B0 effect on β2
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Back to MHD

Enhanced layer broadening due to less counter-gradient
Reynolds stress, more down-gradient Maxwell stress

z
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−0.05

0.00
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τ u
,τ

b,
t
=
95
.0
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MA = 25

τu
10× τb
∑

kx

kx = 0.2

kx = 0.4
∑

kx≥1.0

z

MA = 40

z

MA = 60

Reynolds stress (solid lines): dominated by large scales (blue, orange), sign
implies counter-gradient transport, weaker at stronger fields
Maxwell stress (dashed lines): dominated by small scales (green), always
gives down-gradient transport, increases with field strength
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Back to MHD

Reduced stable mode activity enhances small-scale
fluctuations, increases dissipation

With stable modes affecting saturation less at lower MA, more energy
goes to small scales
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MA = 40,Rm = 500
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MA = 60,Rm = 1000

MA = 100,Rm = 500

Hydro run

Small-scale fluctuations drive viscous, resistive dissipation
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End

Conclusions

- Stable modes transfer energy back to base flow, produce
counter-gradient momentum transport

- Stable modes nonlinearly driven by unstable modes to significant
amplitudes, despite linear stability

- Stable and unstable modes alone describe large-scale fluctuations well

In the MHD case:

- Increased B0 suppresses stable modes → reduces their
counter-gradient momentum transport

- Without stable modes, more energy cascades to small scales

- Small-scale fluctuations increase dissipation and down-gradient
Maxwell stress

Future directions for this work: MHD problem with reinforced profile,
separate model for magnetic fluctuations; investigate stratified shear

flows
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End

The end

Thank you!
Recently published in Physics of Plasmas, see
https://doi.org/10.1063/5.0034575
My email: adfraser@ucsc.edu
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Backup slides

Assessing nonlinear coupling for a fixed profile

Fraser et al. 2017:
analytical
calculation of
hydro, inviscid,
incompressible, 2D,
fixed shear layer
(φ: streamfunction)

At saturation, does more energy go to φ2 or high kx?

→ Consider arbitrary linear combination, φ(z, t) =
∑

j βj(t)φj(z)

→ From vorticity equation, derive eqn for mode amplitudes:

∂

∂t
∇2φ = L[φ]

︸︷︷︸

linear terms

+N [φ, φ]
︸ ︷︷ ︸

v·∇v

→
∂

∂t
βj = iωjβj +

∑

m,n

Cjmnβmβn
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Backup slides

Amplitude equations: unstable modes nonlinearly pump
stable modes

∂

∂t
βj = iωjβj +

∑

m,n

Cjmnβmβn

Nonlinear coupling coefficients Cjmn: characterizes energy transfer
between φj, φm, φn through v · ∇v

For stable mode j = 2:

∂tβ2 = γ2β2
︸︷︷︸

inviscid decay

+C211β1β1
︸ ︷︷ ︸

NL pumping

+ . . .

0 20 40 60

t

10−3

10−2

10−1

100

Eigenmode amplitudes

Unstable mode

Stable mode

Seen in simulations: first β2 ∼ eγ2t, then β2 ∼ C211β1β1 ∝ e2γ1t

Evaluated threshold parameter Pt ∼
stable-unstable couplings
unstable-only couplings , found Pt & 0.3

⇒ Stable mode coupling significant in saturation
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Backup slides

Track stable mode excitation via DNS

KH in sinusoidal flow (V0 ∼ cos(keqx x)ŷ): common secondary instability

Tracking stable modes in DNS requires eigenvalue tools, included in
gyrokinetic turbulence code Gene (genecode.org)

Fraser et al. (2018): simulate unstable, sinusoidal, reinforced∗ VE×B shear
flow → investigate stable modes in post-processing

0.0 0.2 0.4 0.6 0.8 1.0
ky/k

eq
x

0.0

0.1

0.2

γ
/k

eq x
V
0 Gene NL ky = 0.05

Gene NL ky = 0.2

Rogers 2005 (GS2)

Dedalus, Re = 400

Gene lin ky = 0.05

Gene lin ky = 0.2

Gene lin ky = 0.001

∗(This is just over-complicated 2D Kolmogorov flow!)
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Backup slides

Magnetic field provides stabilizing influence

Calculate eigenmodes for V0 = tanh(z)x̂,B0 = x̂ in Dedalus

System is linearly unstable for MA & 1-2 and 0 < kx < 1

0.0 0.2 0.4 0.6 0.8 1.0
kx

0.00

0.05

0.10

0.15

0.20

γ

MA = 3.0

MA = 4.0

MA = 8.0

MA = 40.0

(Dashed lines:
wavenumbers in
our Lx = 10π
simulations)
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