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Brief History and Issues

bistable flux model (minimal)
– Hinton ’91, Heat flux

−Q =

(
χnc +

χT

1 + α (duE/dx)2

)
∇T

χnc neoclassical –H-mode survivor, χnc , χTurbulent both const.
uE - from radial force balance, α ∼ 1/γ2

two stable branches, H-mode gradient MHD-stability limited
phase coexistence region
transition may occur in co-existence region at any point
key question: where (when) does it actually occur?
flux suppression factor depends on both pressure and density
gradients, suggests two field model at least (p,n)
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Two field problem

use two component model introduced by Hinton and Staebler, ’93
two equations for diffusive particle and energy transport
flux suppression factors originating from E×B flow shear

particles:
∂n
∂ t
− ∂

∂x

[
D0 +

D1

1 + α (dVE/dx)2

]
∂n
∂x

= S(x)

heat:
3
2

∂p
∂ t
− ∂

∂x

[
χ0 +

χ1

1 + α (dVE/dx)2

]
∂p
∂x

= H(x)

S (fueling) is concentrated at the edge, x ' a –edge fueling
H (heating) at plasma center (x = 0) on -axis deposition
equations are coupled because

V ′E '
c

eB
∂

∂x
n−1 (x ,τ)

∂

∂x
p (x ,τ)→ E ′r coupling

χ1,D1→ pre-transition,
χ0,D0→ post-transition (may be 6= neo)
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Reduction of the Model

g1 =−dn
dx

, g2 =−dp
dx

,

quasi-stationary state:
–exact relation between gradients of p and n (Γ and Q- integrated
particle and heat sources)

g2 =
QD1g1

χ1Γ− (D0χ1−χ0D1)g1

arrive at effectively one field evolution

∂g
∂ t

=
∂ 2

∂x2

[
g +

λg

1 + g4 (1 + θg)−2 −Γ1(x)

]
g ∝ g1, λ = D1/D0, θ = (χ0D1−D0χ1)/χ1Γ, Γ1 = Γ/D0
-decoupled equations
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Reduction cont’d

2 field→ 1 field (but more
complex functional form)
N.B. Analytical Part of Hinton -
Stabler ’93

⇒ χ1

χ0
=

D1

D0

so, g2 = QD1g1/χ1Γ
but

?
χ1

χ0
=

D1

D0
?

For ES turbulence: χ1 ∼ D1
Post transition: χ0 ∼ χneo

D1� χneo

λ = D1/D0 > λcrit → 2−8
depending on
θ = (χ0D1−D0χ1)/χ1Γ
and physics of D1 uncertain....
⇒ non-ELM particle transport
in pedestal ??
general case

g2 =
QsD1g1

χ1Γs− (D0χ1−χ0D1)g1
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Phase coexistence

→what is required for phase co-existence?
need to find roots of the equation

g +
λg

1 + g4 (1 + θg)−2 = Γ1

⇒phase coexistence criterion, simple for ϑ = 0

Π− <
√

QΓ < Π+

Π± ≡
(y±

α

)1/4 1 + λ + y±
1 + y±

D0

√
χ1

D1
, y± =

3λ

2
−1± 3

2

√
λ

(
λ − 16

9

)
where is transition?
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General Criterion for Coexistence

arbitrary D’s and χ ’s
introduce:

A =
D0

D1
+

χ0

χ1
; B =

D0χ0

D1χ1

coexistence condition

A3 (32B−4)−4A4−9A2 +108B (4B−1)<0
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Maximum Stregth of the Transition

Bifurcation Depth
introduce:
y = K 4g2

1g2
2 ≥ 0

K 2 =
√

αc/eBn2

and

ζ ≡ Umax
Umin

for a function

U (y)≡
√

y
(

1 +
D1/D0

1 + y

)(
1 +

χ1/χ0

1 + y

)
= K 2 ΓsQs

D0χ0
≡P
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Location of Transition Point

1 Hyperdiffusion regularization- Reduced
Transition Model

∂g
∂ t

=
∂ 2

∂x2

[
g +

λg

1 + β(x)g4 (1 + θg)−2 −Γ1(x)− ε
2 ∂ 2g

∂x2

]

→Maxwell
2 Variational approach: construct Φ(g)

such that
∂g
∂ t

=
∂ 2

∂x2
δΛ

δg
, Λ =

∫
[Φ(g)−Γ1g]dx

One can verify that

dΛ

dt
≤ 0

so that the “true” stationary solution requires a
global minimum of Λ. This leads to the Maxwell
rule, again

Φ(g)−Γg

g

Γ<Γ
f

Φ(g)−Γg

g

Γ>Γ
f

Φ(g)−Γg

g

Γ=Γ
f

(a)

(b)

(c)

g

Γ(x)

g (x)
+

g 
+

g (x)
-

g 
-

Γ=Γ
f

(d)
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Curvature effects of the pressure profile

second derivative of the
pressure profile

dVE

dx
'− c

eBn2
∂n
∂x

∂p
∂x

+
c

eBn
∂ 2p
∂x2

F(g )

g

2

2

Maxwell Rule

bifurcation problem (reduction
to one field still works)

F (g2,µ)≡

χ0g2 +
χ1g2

1 +

(
σg2

2
1+κg2

+ µ
dg2
dx

)2 = Q (x)

σ =
√

α
c

eBn2
Γχ1

QD1
;

κ =
D0χ1−χ0D1

D1Q
; µ =

√
α

c
eBn
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Conclusions

⇒hyperdiffusion regularization, variational principle and noise
lead to the Maxwell rule
⇒new rule for barrier location is established: in the finite pressure
curvature case it occurs at the lowest possible value of thermal
flux (for coexistence)
in the core plasma, the curvature of the pressure profile is shown
to be able to produce an L→H transition even if the density profile
is flat (i.e. stable)
4curvature driven transition is different from the standard case in
which the density and pressure barriers are coupled
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Discussion

⇒What Does this All Mean, in Practice....
⇒for “standard” minimal model:
- ∃ co-existence region
- scale↔ λN (tiny in ITER)
- Pcrit ↔ D0 (very poorly understood)
- hysteresis O (1/2) expectation i.e. Maxwell back-transition naive
back transition (not good news)⇒including pressure curvature:
-transition for Q0 = Qmin
-hysteresis uncertain
-transition possible for weak flat ∇n→ beat λN??
-dynamics require further study.

14 / 14


	Transport barrier definition
	Transport bifurcation: brief history and issues
	Two field problem  Minimal Acceptable Model
	Reduction of the Model
	Phase Coexistence
	stationary solutions
	Solution requires regularization Coexistence  Actual Transition

	Location of the Transition Point
	Conclusions

