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Transport barrier
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@ region of reduced (turbulent) transport relative to surroundings
evident profile steepening

@ Key issues:
-threshold, pedestal width/extent
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Brief History and Issues

@ bistable flux model (minimal)
— Hinton '91, Heat flux

XT
~Q=( Zno+ VT
<X”° 1+a(duE/dx)2>

Xnc Neoclassical —H-mode survivor, Xnc, X7urbuient POth const.
ug- from radial force balance, o ~ 1/y?

@ two stable branches, H-mode gradient MHD-stability limited
@ phase coexistence region

@ transition may occur in co-existence region at any point
@ key question: where (when) does it actually occur?

@ flux suppression factor depends on both pressure and density
gradients, suggests two field model at least (p, n)
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Two field problem

use two component model introduced by Hinton and Staebler, '93
two equations for diffusive particle and energy transport
flux suppression factors originating from E x B flow shear

particles: 20— 2 lDO+D1] 9N _ s(x)

ot dx 1+ o (dVe/dx)? | ox

heat: 89p_ 9 [O X1 ]ap_

S o+ —— M | I H(x
29t ox |* 1+ a(dVg/dx)? | 9x )

S (fueling) is concentrated at the edge, x ~ a —edge fueling
H (heating) at plasma center (x = 0) on -axis deposition
equations are coupled because

L~ e—CBaa—xn‘1 (x,7) (;ixp(x, ) — E} coupling
x1,Dy — pre-transition,
Xo, Do — post-transition (may be # neo)

l
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Reduction of the Model

_ _dn _ 9
g1 = dX’ 9o = dX7
quasi-stationary state:

—exact relation between gradients of p and n (I and Q- integrated
particle and heat sources)

_ QD1 g1
21T = (Dox1 — 20 D1) 91
arrive at effectively one field evolution

(0]

dg  d? A9
- = +

991, A =D1/Do, 8 = (x0D1 — Dox1) /x1T, T1=T/Do
-decoupled equations

—T1(x)
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Reduction contd

@ 2 field — 1 field (but more
complex functional form)
N.B. Analytical Part of Hinton -
Stabler '93

x1 Dy
=24 =1
xo Do
S0, go = QD191 /x1T
but
, 2 _Dbig
xo Do

For ES turbulence: xq ~ Dy
Post transition: o ~ Xneo

D1 < Xneo

depending on

8 = (xoD1—Dox1)/x1T

and physics of D; uncertain....
= non-ELM particle transport
in pedestal ??

@ general case

_ QsD 94
21Ts — (Dox1 — x0D1) 91

g2
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Phase coexistence

—what is required for phase co-existence?
need to find roots of the equation

rg
g+ — =1
1+94(1+6g)72
=-phase coexistence criterion, simple for ¥ =0

N <var <ng
(YA Aty 21 3 .3 16
”i:<a> 14y, Do D, V=72 RV i

where is transition?
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General Criterion for Coexistence

@ arbitrary D’'s and x’s

@ introduce:
Dy +)Co _ Doxo
Dy Di x4

@ coexistence condition

A3(32B—4)—4A* —9A?1+108B(4B—1)

[ LH transition
possible
1

No L-H transitions

0

1

<0
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Maximum Stregth of the Transition

15

o Bifurcation Depth ~ *|
@ introduce: 2ot,=0.1
y:K4g1zg§ZO = |

K2 =\/ac/eBn?

and %X, =02
s
%o/t =0.3
— Umax 3
o ‘: = Unin \>§§:§3:~“¥
. TEENS i | | ‘
@ for a function 05 ‘ 02 ‘ 0.4 ' 0.6 ‘ 0.8 oo

D1/Do>< X1/%o) > sQs
Uy)= vy (142200 (14 2080 _ o s _p
¥) W( * 1+y * 1+y Doxo
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Location of Transition Point

o Hyperdiffusion regularization- Reduced
Transition Model

2
P 29 (-
It 0x® |7 14 Bx)g* (1+69)
— Maxwell
@ variational approach: construct ¢ (g)
such that
dg _ 92 A
=55 _/[q> ~Tiglax
One can verify that
dA
<
dt <0

so that the “true” stationary solution requires a
global minimum of A. This leads to the Maxwell
rule, again
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Curvature effects of the pressure profile

@ second derivative of the
pressure profile
dVe = ¢ 9ndp ¢ I
‘dx ~ eBmPdxdx  eBnox?

F(g,)

Maxwell Rule

@ bifurcation problem (reduction
to one field still works)

F (g2, 1) =
X092+ 72192 5 = Q(X)
1+ (1% )
G:\/aeBan CFDLD:;
— Doxi _XOD1;u:\/&i

D1 Q eBn
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Conclusions

@ =-hyperdiffusion regularization, variational principle and noise
lead to the Maxwell rule

@ =-new rule for barrier location is established: in the finite pressure
curvature case it occurs at the lowest possible value of thermal
flux (for coexistence)

@ in the core plasma, the curvature of the pressure profile is shown
to be able to produce an L—H transition even if the density profile
is flat (i.e. stable)

@ /Acurvature driven transition is different from the standard case in
which the density and pressure barriers are coupled
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Discussion

=What Does this All Mean, in Practice....

=-for “standard” minimal model:

- 9 co-existence region

- scale«» Ay (tiny in ITER)

- Pgit <+ Dy (very poorly understood)

- hysteresis O(1/2) expectation i.e. Maxwell back-transition naive
back transition (not good news)=-including pressure curvature:
-transition for Qy = Qmin

-hysteresis uncertain

-transition possible for weak flat Vn — beat An??

-dynamics require further study.
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