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What are the minimal requirements to resolve
turbulent convection on a vertical 1D domain?

• Spatially resolved molecular (Fickian) transport of T

• Vertical advection
– must overturn fluid
– non-dilatational (1D analog of div u = 0)

Advection that is spatially local and continuous in 
time cannot satisfy these requirements, so advection 
by instantaneous rearrangements of vertical property 

profiles - map-based advection - is introduced

To time advance ρ(z,t) [Boussinesq: use T], need:



Turbulent motion is implemented as a sequence of 
triplet maps that preserve desired advection properties

The triplet map 
is implemented 
numerically as 
a permutation 
of fluid cells (or 
on an adaptive 
mesh)

The triplet map captures
compressive strain and 
overturns, and causes no 
property discontinuities

This procedure 
emulates the 
effect of a 3D 
eddy on property 
profiles along a 
line of sight
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At every instant, the buoyancy frequency N 
can be evaluated for very possible map

T(z,t) g

L2
z2

L1
z1

N(z2,L2;t)

N(z1,L1;t)

l(z,L;t) dz dL dt  =  const﹡L-2 N(z,L;t) dz dL dt

Continual updating of l is too costly, so use a rejection method

Mapping rate distribution:



To introduce Pr dependence, impose a lower bound 
on N, yielding Density Profile Evolution (DPE)

If L2 N(z,L;t) /n < const, the map is forbidden because

viscous damping suppresses the incipient turnover

1. Sample a map at time ttrial as follows:
a. Efficiently* sample the arguments of N(z,L)
b. Decide whether to accept or reject this map

2. If accepted:
a. Implement the map 
b. Time step the molecular transport PDE to time ttrial

3. Sample the new time ttrial of the next map attempt
4. Go to 1

*educated guess

DPE (schematic):



Canonical results are reproduced

Imposed unstable temperature gradient
(using jump-periodic boundary conditions)

yields Bolgiano spectral scaling

Rayleigh convection:
Nu(Ra,Pr) and Re(Ra,Pr)
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Figure 11. Computed power spectra of density fluctuations in stationary homogeneous buoy-
ancy-driven turbulence, normalized to demonstrate the scaling of the high-wavenumber cuto↵,
for Pr = 1: ——–, Ra = 1011; - - - - -, Ra = 1012. A line segment of slope � 7

5 identifies the
Bolgiano–Obukhov scaling regime.

plates, so it is equal to �dhT i/dy|y=0, the heat flux at the lower plate. (Here, plates
are located at y = 0 and L. The factor ⇢0c is omitted because it drops out of all
normalized fluxes, assuming constant heat capacity c.) In motionless fluid, dhT i/dy
is equal to ��/L for all y, where � is the magnitude of the imposed temperature
di↵erence, and the heat flux is �/L. These relations give

Nu = �L

�

dhT i
dy

����
y=0

. (5.1)

In DPE, Rayleigh convection is simulated by maintaining an unstable density
di↵erence across the y interval [0, L]. In the Boussinesq approximation, density
and temperature di↵erences are proportional, but opposite in sign, so the thermal
interpretation of this configuration follows directly.

In normalized units, this flow is characterized by Ra and Pr. The dependence of Nu
on Ra and Pr in DPE is considered. This dependence is sensitive to several features
of wall-bounded buoyancy-driven flow in DPE.

The key assumption in the classical similarity analysis of Rayleigh convection
is that near-wall flow structure is independent of plate separation L for large Ra.
The mixing-length similarity scalings that follow from this assumption explain many
features of Rayleigh convection and related flows (Adrian et al. 1986; Siggia 1994).
However, nonclassical scalings attributed to bulk-flow e↵ects are observed in some
high-Ra flow regimes (Siggia 1994).

As in three-dimensional Rayleigh convection, it is anticipated that mixing in the
interior of the DPE simulation suppresses the mean density gradient, which therefore
resides primarily in conduction-dominated wall layers. This picture is verified self-
consistently through scaling analysis, supported by numerical results. The focus of
the scaling analysis is estimation of the thickness y of the conduction layers. In
particular, the possible dependence of conduction-layer structure on L is considered.
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Figure 14. Computed Re in coordinates based on mixing-length theory. Symbols as in figures
12 and 13; - - - - -, linear fit to computed results. Correlations inferred from measurements: ——–,
Pr = 0.7 (Fitzjarrald 1976); � . �, Pr = 7 (Tanaka & Miyata 1980). � . . . �, correlation based on
direct numerical simulation for Pr = 0.7 (Kerr 1996). Correlations are plotted over the ranges of
the respective data sets.

implied by (5.4), but interior-flow velocity measurements for Pr = 0.7 (Fitzjarrald
1976) and Pr = 7 (Tanaka & Miyata 1980) obey that Ra dependence. The Pr = 7
result is obtained by assuming isotropy of the interior flow. The accuracy of this
assumption was not checked, so the di↵erence between the two measured correlations
does not necessarily imply a deviation from the Pr dependence of (5.4). A flow
Reynolds number inferred from thermal time histories has also been found to obey
(5.4) for given Pr (Cioni et al. 1997). The ODT results and the comparisons to DNS
and experimental results indicate that the definition of velocity in terms of the cell
displacement and the event time scale in § 2.4.1 is consistent with the classical mixing-
length theory of Rayleigh convection and yields reasonably accurate quantitative
results.

5.3. Penetrative convection

A key feature of atmospheric-boundary-layer (ABL) dynamics is the daytime growth
of the buoyancy-driven mixed layer as it penetrates the stably stratified layer estab-
lished earlier by nocturnal surface cooling (Stull 1988). Deardor↵ ’s (1970) convective
scalings have been used to correlate a variety of laboratory and field measurements
and numerical simulations of mixed-layer structure (Adrian et al. 1986; Coleman &
Ferziger 1996). The correlations indicate that important features of the scaled struc-
ture are insensitive to Reynolds number, mean shear, Coriolis e↵ects, and transient
growth of the layer.

Deardor↵ & Willis (1985) performed a shear-free penetrative-convection experiment
that has become a benchmark for mixed-layer data correlations. Their configuration
is an initially linear, stable thermal stratification, heated from below.

In DPE, this configuration is simulated by applying a constant density flux �Q at
the bottom of a linear, stable initial density profile characterized by the length scale
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Figure 13. Heat transfer in Rayleigh convection, using low-Pr scaling. Computations: �, Pr = 0.01;
5, Pr = 0.1; ⇥, Pr = 0.7; +, Pr = 1; ⌃, Pr = 10. Line segments: - - - - -, Nu ⇠ Ra1/4; ——–,
Nu ⇠ Ra2/7.

Cioni, Ciliberto & Sommeria (1997) conclude that the power of Ra appearing in the
Nu scaling is 0.26 at low Pr, near 2

7 at Pr of order unity, and near 1
3 at high Pr.

Large-scale motions are observed that depend on vessel shape and on Pr, but at
Pr of order unity, the suppression of these motions by screens does not change the
heat-transfer scaling.

Cioni et al. (1997) note the di�culty of reconciling these and other observations
with various models that have been proposed. The models typically involve the
application of mixing-length concepts to a proposed schematic picture of the flow.
The models for di↵erent regimes bear no obvious relation to each other.

It is interesting in this regard that DPE exhibits significant (two decades or longer)
transitional Nu scalings that are consistent with the 0.26 and 2

7 exponents seen at low
and moderate Pr respectively. Also consistent with measurements is the robustness
of Ra1/3 scaling at high Pr. The DPE results for low Pr are especially interesting
because they indicate Nu ⇠ Ra1/4 transitional scaling and also indicate a Re scaling
that is consistent with measurements (§ 5.2.4). In contrast, a low-Pr mixing-length
analysis that reproduces Nu ⇠ Ra1/4 scaling disagrees with the measured Re scaling
(Cioni et al. 1997).

Thus, DPE reconciles a variety of behaviours that have not previously been ex-
plained within a single framework. Application of mixing-length analysis to DPE
itself does not explain the performance of the model. As shown in § 5.2.1, Nu ⇠ Ra1/3

is predicted for all Pr regimes of the DPE simulation. The additional transitional
scalings seen in the DPE numerical results highlight the distinction between con-
ventional mixing-length analysis and mixing-length physics as embodied in DPE
(or more generally, in ODT). Equation (2.3) is a mixing-length relation applied
to an individual eddy, rather than to an ensemble-averaged flow property. Owing
to the strong two-way coupling between mapping events and the velocity profile,
this formulation admits the possibility of flow evolution qualitatively di↵erent from



A slow-diffusing stable species can cause layering 
of a convection process: double-diffusive instability

heat flux

r
S
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thermohaline staircase

rS is the density variation due to salinity (S) variation

rT is the density variation due to temperature (T) variation

Initial state: constant temperature, salinity decreases with increasing height 
(stable, no motion)

Forcing: heat from below causes gravitational instability leading to turbulent mixing

Role of molecular transport:  salt diffusivity is negligible, so a stable jump forms, 
but heat diffuses across, initiating a new turbulent layer above the jump



With the addition of the vertical 
salinity profile S, a staircase is obtained

temperature

salinity

density



In a homogeneous configuration 
(jump-periodic BCs) layers merge( )A.R. KersteinrDynamics of Atmospheres and Oceans 30 1999 25–46 43

Fig. 8. Density profiles from a simulated realization with linear initial component profiles, for R s 1.5.r

Profiles at successive times are displaced rightward for clarity. The time increment between profiles, scaled by
the stability frequency N, is 735.

for adequate statistical precision, then the result was not plotted. For the larger-R cases,r

results are sparse because a long time interval was required for the layered structure to
be established over the entire computational domain.

Fig. 9. Dependence of the flux ratio R on the number of interfaces, from simulations with linear initialf
Ž . Ž . Ž . Ž .component profiles, for R s 1.2 diamond , 1.5 triangle , 2 square , and 3 = .r



DPE reproduces observed regimes 
of interface structure

measurements

theory

symbols: DPE results for two
flow configurations

Ratio of density jumps (salinity/temperature) 
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No velocity field, so P.E. is ‘dissipated’; 
need P.E. -> K.E. -> viscous dissipation 

Density-Profile Evolution (DPE):
Kerstein, 1999

Experiment:
Huppert and Linden, 1979



This extension, One-Dimensional Turbulence (ODT), 
produces layers in stirred stably stratified fluid

Experiment:   Holford and Linden, 1999 ODT:  Wunsch and Kerstein, 2001

buoyancy (normalized)



In ODT, the eddy rate distribution λ includes 
shear as well as buoyancy contributions

Eddy-induced shear amplification drives smaller eddies, 

producing an eddy cascade
(k-5/3 energy spectrum in shear-dominated flows)

z u(z)



ODT simulations provide flow-specific 
representations of turbulence

Kelvin Helmholtz                                  planar jet
(step-function initial u) (top-hat initial u)

These simulations are based on time advancement of ut = nuzz
with flow-specific initial u profiles (see below), plus eddies

• Each vertical line shows the spatial extent of an eddy
• Horizontal location is its time of occurrence
• Units are arbitrary

z



budget are shown in Fig. 8 for a range of s values at Mc
=0.7, including the s=1 profiles shown in Fig. 3. ODT is
seen to provide a good representation of the s dependence of
flow energetics. Profile shape features, including lateral dis-
placement and other asymmetries at s!1, are captured, and
DNS profile amplitudes are well matched except at s=8.
Both DNS and ODT indicate that the turbulence production
peak is progressively expelled from the high-density side of
the mixing layer, reflecting the phenomenology discussed in
Secs. III C and III D.

F. Growth rate

The results examined thus far indicate the extent and the
mechanisms of entrainment inhibition on the high-density
side of the mixing layer. This inhibition reduces overall layer
growth by slowing the transfer of momentum that controls
the overall growth rate.

Ramshaw inferred growth reduction with increasing s
using a linear stability analysis that he extended to the non-
linear regime using scaling hypotheses.34 The analysis as-
sumed incompressible temporal flow. Here, his prediction is
compared to DNS and ODT results, subject to the caveat that
the analysis does not precisely define the layer thickness
measure h on which his growth rate dh /dt is based.

To compensate for this ambiguity, his predicted
2s1/2 / !s+1" dependence of the growth rate is compared in
Fig. 9 to the data of Fig. 1, scaled for each Mc value by the
growth rate for s=1. The predicted decrease with increasing
s is milder than indicated by the Mc=0.7 DNS results. It is
unclear whether incompressible DNS would agree more
closely with the prediction. ODT results indicate that the
scaled growth rate is a nonmonotonic function of Mc for

given s. Additional DNS runs would be needed to check this
behavior and to test Ramshaw’s prediction in the incom-
pressible regime.

More significant than the comparison of growth rates
based on a particular thickness definition is the observation
that different thickness measures yield different growth-rate
magnitudes and s dependencies. Figure 10 shows DNS and
ODT growth rates based on two alternate thickness defini-
tions. One is a mean-velocity !MV" thickness, obtained from
Eq. !30" by omitting the density factors in the integrand and
in the denominator in front of the integral and substituting
unweighted mean velocities for Favre-averaged velocities in
the integrand. The other, a density-integral !DI" thickness, is
defined as

FIG. 8. For Mc=0.7, lateral profiles of
turbulent-kinetic-energy budget terms
scaled by !"U"3 /#$. Format as in Fig.
3. !a", !b", !c", !d": s=1, 2, 4, and 8,
respectively. #For s=1, the curves in
Fig. 3!b" are replotted for ease of com-
parison to results for s!1.$

FIG. 9. Density-ratio dependence of the mixing-layer growth rate based on
momentum thickness #$, scaled by the growth rate for s=1. ----, Ramshaw’s
prediction !Ref. 34"; other notation as in Fig. 1.
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density ratio increases. A heuristic explanation is that mo-
mentum and density mixing of heavy and light fluid results
in a mixture whose velocity is close to the velocity of the
unmixed heavy fluid. If the density contrast is large !s!1",
then there is little change of the mixture velocity until the
mixture density is of the order of the density of the unmixed
light fluid. This requires strong dilution of heavy fluid
!heavy-fluid mixture fraction of order 1 /s", which occurs on
the low-density side of the mixed zone. The relationship be-
tween velocity and density profiles seen in Fig. 4 is consis-
tent with this picture.

A further implication of the tendency of the mixed-fluid
velocity to remain close to the velocity of the heavy fluid is
as follows. This reduction of velocity variation on the high-
density side lessens the velocity shear responsible for turbu-
lence production. The reduced production causes a reduction
of the entrainment of high-density fluid into the mixed re-
gion. The shear in the lower-density region is less effective
than high-density shear at entraining high-density fluid be-
cause the turbulence it produces has proportionately less mo-
mentum at a given shear rate.

The manifestation of this entrainment reduction in Fig. 4
is the steepening of the large-s mean density profiles on the
high-density side. This is reminiscent of the steepening of
density profiles on the high-density side of stably stratified
shear layers.32 High-density fluid is scoured from the free
stream by eddies whose extent of penetration into the free
stream is much less than their spatial extent within the mixed
zone. Once entrained, small patches of high-density fluid
mix are diluted and are transported without significant hin-
drance across the layer. This explains the broader tail of the
mean density profile on the low-density side, seen in both the
DNS and ODT profiles at large s.

D. Variable-density flow evolution in ODT

The phenomenology outlined in Sec. III C is not concep-
tually dependent on the presence or absence of compressibil-
ity effects. ODT results for a range of s values at Mc=0.3 !in
ODT, equivalent to Mc=0; see Sec. III B" exhibit compa-
rable features. For Mc=0.3, Fig. 5 illustrates variable-density
effects in ODT by means of a graphical representation of
flow evolution during a simulated ODT realization for s=8.
In this rendering, each eddy event during the realization is
represented by a vertical line with horizontal segments at

each end !error-bar format". The vertical extent of each line
corresponds to the eddy interval in the lateral y coordinate
!in some instances, too small to be discernible in this for-
mat". Its horizontal location corresponds to the time of oc-
currence, with time advancing from left to right. The denser
free stream is below the mixed zone. The value of Re" at the
end of the plotted realization !based on ensemble-averaged
results for s=8" is 40 000.

Constant-density mixing-layer evolution is illustrated in
this format in Ref. 22. The flow evolution seen on the low-
density side of the s=8 realization resembles the constant-
density evolution. Eddies of various sizes extend into the
free stream and entrain fluid. Entrainment proceeds both by
frequent nibbling of the free stream by small eddies and by
occasional large penetrations reminiscent of large entraining
motions. The visual impression of the resulting well-defined
though irregular entrainment interface is remarkably analo-
gous to visualizations of entraining turbulent shear flows.33

On the high-density side, the frequency of large penetra-
tions into the free stream is reduced. Large penetrations in-
volve eddy events that are much larger than the extent of
penetration.

Figure 6 shows instantaneous ODT density and velocity

FIG. 4. For the Mc=0.7, s# 1 cases
of Fig. 1, lateral profiles of !a" mean
velocity #u$ scaled by $U, !b" mean
density #%$ scaled by the arithmetic
average %0 of the free-stream densities.
DNS: s=2 !circle", 4 !square", 8 !dia-
mond". ----, ODT !for the same s
values".

FIG. 5. Eddy locations !vertical lines bounded by horizontal segments" vs
time in one ODT realization of a temporally developing mixing layer for
Mc=0.3, s=8. Spatial units are 20& /$U and time units are 20& / !$U"2.
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A full variable-density ODT formulation is compared 
to DNS of K-H for density ratios up to 8 (no buoyancy)

Plotted: lateral (y) profiles
scaled by momentum thickness

Ma=0.7: 
curves, ODT
(Ashurst and Kerstein 2005); 
symbols, DNS 
(Pantano and Sarkar 2002)

DU = free-stream velocity difference
r0 = mean of free-stream densities

Free-stream density ratios (s)
for mean profiles (top):
○, s=2;  □, s=4;  ◊, s=8

Energy budget terms (bottom):
○, production
∆, transport
Ñ, dissipation

budget are shown in Fig. 8 for a range of s values at Mc
=0.7, including the s=1 profiles shown in Fig. 3. ODT is
seen to provide a good representation of the s dependence of
flow energetics. Profile shape features, including lateral dis-
placement and other asymmetries at s!1, are captured, and
DNS profile amplitudes are well matched except at s=8.
Both DNS and ODT indicate that the turbulence production
peak is progressively expelled from the high-density side of
the mixing layer, reflecting the phenomenology discussed in
Secs. III C and III D.

F. Growth rate

The results examined thus far indicate the extent and the
mechanisms of entrainment inhibition on the high-density
side of the mixing layer. This inhibition reduces overall layer
growth by slowing the transfer of momentum that controls
the overall growth rate.

Ramshaw inferred growth reduction with increasing s
using a linear stability analysis that he extended to the non-
linear regime using scaling hypotheses.34 The analysis as-
sumed incompressible temporal flow. Here, his prediction is
compared to DNS and ODT results, subject to the caveat that
the analysis does not precisely define the layer thickness
measure h on which his growth rate dh /dt is based.

To compensate for this ambiguity, his predicted
2s1/2 / !s+1" dependence of the growth rate is compared in
Fig. 9 to the data of Fig. 1, scaled for each Mc value by the
growth rate for s=1. The predicted decrease with increasing
s is milder than indicated by the Mc=0.7 DNS results. It is
unclear whether incompressible DNS would agree more
closely with the prediction. ODT results indicate that the
scaled growth rate is a nonmonotonic function of Mc for

given s. Additional DNS runs would be needed to check this
behavior and to test Ramshaw’s prediction in the incom-
pressible regime.

More significant than the comparison of growth rates
based on a particular thickness definition is the observation
that different thickness measures yield different growth-rate
magnitudes and s dependencies. Figure 10 shows DNS and
ODT growth rates based on two alternate thickness defini-
tions. One is a mean-velocity !MV" thickness, obtained from
Eq. !30" by omitting the density factors in the integrand and
in the denominator in front of the integral and substituting
unweighted mean velocities for Favre-averaged velocities in
the integrand. The other, a density-integral !DI" thickness, is
defined as

FIG. 8. For Mc=0.7, lateral profiles of
turbulent-kinetic-energy budget terms
scaled by !"U"3 /#$. Format as in Fig.
3. !a", !b", !c", !d": s=1, 2, 4, and 8,
respectively. #For s=1, the curves in
Fig. 3!b" are replotted for ease of com-
parison to results for s!1.$

FIG. 9. Density-ratio dependence of the mixing-layer growth rate based on
momentum thickness #$, scaled by the growth rate for s=1. ----, Ramshaw’s
prediction !Ref. 34"; other notation as in Fig. 1.
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Eddy sampling is based on the set of time scales t of 
possible eddies, generalizing the set of 1/N values

Principle: Enforce consistency of eddies and flow (velocity and density profiles)

Eddy: Eddy velocity           so eddy energy                   (      eddy size)

Flow:               gravitational potential energy change caused by the eddy

maximum kinetic energy extractable by adding kernels
to velocity components within the eddy interval 

t/~ l 23 /~ tr l =l

ºP

Relation determining t for a given eddy at a given instant:

÷÷
ø

ö
çç
è

æ
--=

l
ZPKAl
r
µ

t

r 2

2

3

adjustable parameters viscous penalty (imposes a 
threshold Reynolds number)
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This approach resembles conventional 
mixing length theory

but

• The concept is applied to range of l values, not a single l value

• K and P are based on the instantaneous state, not an average state

• Alternation between eddies and molecular transport introduces 
strong coupling, thereby linking eddy dynamics to the flow 
configuration (ICs, BCs, body forces, fluid properties, etc.)

Velocity profiles determine the spatial distribution of 
kinetic energy, thereby influencing eddy occurrences, 

but velocity does not directly advect fluid



Energy conversion is implemented by 
an additional eddy operation

eddy range

u
v
w
c

u
v
w
c

u
v
w
cTriplet map

is applied to
all properties

(velocities 
u, v, w and
scalar, c)

Advection:
Kernels are

added to
velocities

but not
scalar

• Evaluate the kinetic-energy term in the expression for 𝜏
• Redistribute kinetic energy among velocity components:                   

‘return to isotropy’
• Change kinetic energy in the eddy range by an amount equal and 

opposite to the map-induced change of gravitational potential energy

u, c

, wv

u, c

, wv

Kernels (analogous to wavelets) are applied to velocity profiles in order to



• Buoyant stratified flow
• Free shear flow
• Mixed convection
• Boundary layers
• Electrohydrodynamic turbulence
• Electromagnetic wave propagation in plasmas
• Frequency spectrum of jet noise
• Cloud aerosol microphysics (droplets and ice)
• Liquid jet breakup
• Combustion and other reacting flows
• Shock-flame interaction and transition to detonation
• Subgrid closure for CFD

Representative applications of map-based advection



Some possible contributions of the 1D 
approach to layering research

• Suite of staircase simulations for parameterization of 
fluxes and interface formation, migration, and merger

• Convection regime for high layer Ra

• Internal-wave effects on staircase formation and evolution

• Generalizations: Multiple species, radiative heat 
transport, multiphase, etc.

• ODT + Cahn-Hilliard

• Perturbation threshold for staircase initiation



An extensive single-interface parameter study 
using ODT yielded Nu and Re correlations

250 E. Gonzalez-Juez, A. R. Kerstein and D. O. Lignell
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Figure 32. Effect of Ri on the rescaled heat flux. Parameter values are Rρ =1.1 (squares),
1.25 (circles), 1.5 (triangles), 2 (inverse triangles), 3 (left triangles), 4 (crosses), 5 (plus signs),
6 (asterisks); Le = 0.01, Pr = 7, C = 10 and Z = 1. Results for Ra = 107, 108 and 109 are shown.
The scaling Nu/("Uh/ν) in (a) highlights a shear-turbulence-dominated regime for Ri ≪ 1, and
the scaling Nu/(Ra/Rρ)0.36 in (b) highlights a double-diffusive-convection-dominated regime
for Ri ≫ 1. Notice in (c) that the scaling Nu/Re collapses the data for all values of Ri, though
there is some scatter when Ri ≫ 1.

Simulations of unsheared interfaces with Rρ = 1.05–6, Ra = 106–1010 and Le = 0.01
show that

Nu ∼
{

(Ra/Rρ)0.37±0.03 when Pr = 3–100

(Ra/Rρ)0.31Pr0.22±0.04 when Pr = 0.01–1,
(5.1)

Re ∼Ra0.45±0.04R−0.12±0.05
ρ Pr−0.58±0.03 when Pr = 0.01–100. (5.2)

A slight decrease of Nu with Pr is seen when Pr ≈10–100, but it is not quantified
since it is too small to accurately fit the available data. The sensitivity of the exponents
to the model parameters C and Z is denoted above with ranges. ODT simulations
also show that Rf stays approximately constant as Pr is varied, and that Rf increases

Gonzalez-Juez, Kerstein, and Lignell 2011



Sheared interfaces were also investigated 
and trends were quantified

Gonzalez-Juez, Kerstein, and Lignell 2011
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Figure 24. Temporal sequence of the locations z0 and sizes l (vertical bars) of eddy events
generated in an ODT simulation of double-diffusive convection with background shear. For
clarity, not every eddy event implemented in the simulations is shown. Values of Ri are (a) ∞,
(b) 794, (c) 7.94 and (d ) 0.1. Other parameter values are Rρ = 6, Ra = 108, Le = 0.01, Pr = 7,
C =10 and Z = 1.

In the model by Canuto et al. (2008a) the governing equations for ui =(u, v, w),
T and S are the Navier–Stokes equations with the Boussinesq approximations. The
flow properties are decomposed into mean and fluctuating parts, i.e. s = ⟨s⟩ + s ′,
where s = ui, T , S, and ⟨s⟩ and s ′ denote the mean and fluctuating components
of s, respectively. This decomposition is substituted into the governing equations.
Further algebraic manipulation gives a set of governing equations for the second-
order moments ⟨u′

iu
′
j ⟩, ⟨u′

iT
′⟩, ⟨u′

iS
′⟩, ⟨T ′2⟩, ⟨S ′2⟩ and ⟨T ′S ′⟩. Of main interest are the

moments ⟨w′T ′⟩ and ⟨w′S ′⟩ representing the vertical heat and salt fluxes, respectively.
The governing equation for any second-order moment ψ has the form

Dψ

Dt
= S + D + P − τ − 1

ψ ψ. (4.3)

Here S represents the source or sink terms that can be calculated directly, i.e.
without modelling, D is a turbulent diffusion term containing third-order moments,
P contains certain terms arising from pressure/turbulence interactions and − τ − 1

ψ ψ
represents the combined effect of dissipation by molecular processes and the return-
to-isotropy induced by pressure, with τψ being a relaxation–dissipation time scale for
the moment ψ . The terms D, P and τψ require further modelling. The modelling of
P and τψ is described in Canuto et al. (2001). By assuming D = 0, quasi-steady-state
conditions, and neglecting all gradients except those in the vertical direction z, a set
of algebraic linear equations for the second-order moments are obtained. The model
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What is turbulent thermal convection with internal sources?

•Turbulent thermal convection denotes the chaotic flow in a layer of fluid that is driven by buoy-
ancy forces due to an unstable temperature stratification. The flow becomes turbulent when buoyancy
and inertial forces are much larger than viscous forces. This type of flow is encountered in numerous
applications that range from technical to atmospheric and astrophysical scales (for an overview, see
e.g. [1] and references therein).

• Internal sources (sinks) heat (cool) the fluid from within like, for example, by radiation [2] or
condensation [3]. The forcing considered in this study is canonical but complementary to fixed tem-
perature and isoflux boundary conditions.

Main objectives

• Investigation of turbulent scaling regimes of the heat transfer in thermal convection with
internal sources and sinks.

•Modeling using a numerical tool applicable throughout the relevant parameter space.

• Capture transient boundary layers by utilizing the one-dimensional turbulence model [4].

Model formulation

The ODT model aims to resolve all relevant scales of a turbulent flow along a notional line-of-sight
(‘ODT line’). Flow variables are resolved along this line on a dynamically adaptive grid [5]. Instanta-
neous flow profiles are evolved by deterministic di↵usion along the ODT domain, and a stochastic
process that models the e↵ects of turbulent advection, pressure fluctuations, and buoyancy forces that
are aligned with the ODT domain (z coordinate) [4, 6, 7].

•ODT governing equations for the Cartesian velocity components ui and the temperature T are

@ui
@t

+ Ei(↵) = ⌫
@2ui
@z2

,
@T

@t
+ ET = 

@2T

@z2
+

Qtot

⇢cp
,

where ⌫ is the kinematic viscosity, ⇢ the reference mass density, cp the specific heat capacity at
constant pressure,  = �/(⇢cp) the thermal di↵usivity with � the thermal di↵usivity, and Qtot the
heat sources and sinks.

• Stochastic terms Ei and ET represent the e↵ects of discrete turbulent eddy events in which the
triplet map models an eddy turnover (Fig. 1).

• The eddy rate ⌧�1(`e, z0; t) of a size-`e eddy event at location z0 at time t depends on the total
available eddy energy for the momentary flow state. The eddy rate reads [6, 7]

⌧�1 = C

q
2 `�2

e
�
Ekin + Epot � Z Evp

�
,

where Ekin and Epot denote the eddy kinetic and potential energy, respectively, and Evp is a viscous
penalty energy to suppress eddies below a viscous length scale [4].

• Fixed ODT model parameters C = 60, Z = 220, and ↵ = 2/3 are used here. Definitions are
identical to [7] but the calibration was performed for canonical Rayleigh–Bénard convection with
Pr . 1 [8].

(a) (b)

Figure 1: (a) Schematic of an eddy turnover. (b) Triplet map for an eddy event that covers the interval 0.2 6 z/H 6 0.8.

Flow configuration and model application

• Layer of fluid of height H for which wall-normal transport is resolved by a vertical ODT line (Fig. 2)

• Uniform constant gravity g = �g ez

•Oberbeck–Boussinesq fluid: linear equation of state, ⇢(T ) = ⇢0
⇥
1 � � (T � T0)

⇤
, where � is

the thermal expansion coe�cient, and subscript 0 denotes reference values

• Smooth adiabatic no-slip wall at bottom z = 0 and top z = H

•Heat sources/sinks: Qtot = Q(z) � hQiz , where Q(z) = (P/`) exp(�z/`) is the local heating
rate, �hQiz the spatial mean cooling rate, ` a prescribed length scale, and P the power influx [9].

• The flow is characterized by the Prandtl, Rayleigh, and Nusselt number,

Pr =
⌫


, Ra =

g � h�T iH3

⌫
, Nu =

PH

� h�T i ,

where �T = T |z=0�T |z=H/2 is a convenient definition of a wall-bulk temperature di↵erence
with temporal average h�T i. This is similar to [9].

(a) (b)

(c)

Figure 2: (a) Sketch of the set-up. The fluid is heated by the profile Q(z) with total power influx P analogous to [9].
(b) Vertical profiles of the instantaneous and temporal-averaged temperature, T and hT i, respectively. Tc denotes the
purely conductive analytic solution that has been compressed here to fit in the plotting range. (c) Vertical profiles of the
instantaneous and temporal-averaged horizontal velocity component u. Control parameters are Pr = 1, Ra = 108, and
`/H = 0.096. Reference scales are given by the flux temperature di↵erence �T0 = PH/� and the corresponding free-fall
velocity Uf ,0 =

p
g ��T0 L.

Scaling regimes of the heat transfer for Pr = 1

Grossmann & Lohse [10] showed that e↵ective scalings of the heat transfer result from bulk and
boundary-layer contributions. For temperature or heat-flux prescribed by boundary conditions, the
di↵erent contributions develop dynamically and can not be individually controlled (unless surface rough-
ness is used which introduces other complications). In the current configuration with internal heat
sources/sinks the problem is addressed by introducing the thermal length scale `/H as additional
control parameter to manipulate the thermal boundary layer.

• Fig. 3(a) shows multiple scalings of the heat transfer in terms of

Nu ⇠ Ra
p (`/H)q for fixed Pr = 1.

Reference experimental results [9] (black symbols) are shown together with ODT simulation results
(color symbols) that exhibit good qualitative and quantitative agreement.

• Various e↵ective scaling laws (black lines) are shown for comparison: p = 1/3 (Malkus [11]),
p = 2/7 (Shraiman & Siggia [12]), p = 1/2 (‘ultimate Rayleigh–Bénard’ [13]), and p ⇡ 0.55
(present ‘ultimate ODT’) scaling. Latter slightly exceeds ‘ultimate’ (turbulence-only) p = 1/2, which
is a strict upper bound for canonical Rayleigh–Bénard convection [14] but not for convection with
internal sources, where the maximum is pmax = 1 that has been achieved for laminar rolls [15].

• Fig. 3(b) shows rescaled data Nu/NuX vs. Ra/RaX, where the subscript ‘X’ indicates a notional
transition point. Following Bouillaut and colleagues [9], we solve for the intersection of the Malkus
(p = 1/3, q = 0) and the ‘ultimate ODT’ (p ⇡ 0.55, q = 1) scaling, that is,

NuX ⇠ Ra
1/3
X ⇠ (`/H)Ra0.55X .

This transformation collapses the ODT and reference data equally well.

• Fig. 3(c) shows the scaling exponent p vs. `/H for high Ra numbers. Here, p was obtained
by fitting Nu ⇠ Ra

p for a central region of each simulated `/H dataset. A plateau is visible on
the right. This is the mixing-length (‘ultimate’) regime for large `/H with p ⇡ 0.55. A logarithmic
variation of p can be discerned to the left in the transitional `/H range. The exponent p seems to
level again for very small `/H in between classical values p = 2/7 and 1/3.

•Conventional and unbiased (log-based) statistics are used to demonstrate statistical conver-
gence. For the cases simulated, the methods yield virtually identical results.

(a) (b)

(c)

Figure 3: Scaling regimes of the heat transfer in turbulent thermal convection with internal sources/sinks at Pr = 1.
(a) Ra number and `/H dependence of the Nu number. (b) Rescaled data collapses approximately. (c) Exponent p of
high-Ra e↵ective scalings for various prescribed `/H .

Conclusions

•ODT is a dimensionally reduced, stochastic turbulence model that aims to resolve wall-normal
(vertical) transport processes on all relevant scales of the flow.

•ODT reproduces and extrapolates the reference experiments [9] with fixed model parameters.

•ODT predicts a turbulent transition from the classical (p ⇡ 0.3) to the ‘ultimate’ regime with
scaling exponent p ⇡ 0.55, which slightly exceeds the ‘turbulence-only’ upper bound p = 1/2 but is
well within pmax = 1 [15].

•ODT predicts a transitional range involving logarithmic dependence of p on `/H that has not
previously been observed or proposed.

Forthcoming research

• Pr number dependence of the Nu number

• Control parameter dependences of the Reynolds (Re) number
• Assessment of upper bounds by variation of source term Q
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[9] V. Bouillaut, S. Lepot, S. Aumâıtre, B. Gallet, J. Fluid Mech. 861, R5 (2019).

[10] S. Grossmann, D. Lohse, J. Fluid Mech. 407, 27 (2000).

[11] W. V. R. Malkus, Proc. Royal Soc. Lond. A 225, 185 (1954).

[12] B. I. Shraiman, E. D. Siggia, Phys. Rev. A 42, 3650 (1990).

[13] E. A. Spiegel, Asrophys. J. 138, 216 (1963).

[14] F. H. Busse, J. Fluid Mech. 37, 457 (1969).

[15] B. Miquel, S. Lepot, V. Bouillaut, B. Gallet, Phys. Rev. Fluids 4, 121501(R) (2019).

Transition to the ultimate regime in a stochastic
model for thermal convection with internal sources
Marten Klein1⇤, Heiko Schmidt1 & Alan R. Kerstein2

1Numerical Fluid and Gas Dynamics, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Germany
2Consultant, Danville, CA, USA ⇤Contact: marten.klein@b-tu.de

What is turbulent thermal convection with internal sources?

•Turbulent thermal convection denotes the chaotic flow in a layer of fluid that is driven by buoy-
ancy forces due to an unstable temperature stratification. The flow becomes turbulent when buoyancy
and inertial forces are much larger than viscous forces. This type of flow is encountered in numerous
applications that range from technical to atmospheric and astrophysical scales (for an overview, see
e.g. [1] and references therein).

• Internal sources (sinks) heat (cool) the fluid from within like, for example, by radiation [2] or
condensation [3]. The forcing considered in this study is canonical but complementary to fixed tem-
perature and isoflux boundary conditions.

Main objectives

• Investigation of turbulent scaling regimes of the heat transfer in thermal convection with
internal sources and sinks.

•Modeling using a numerical tool applicable throughout the relevant parameter space.

• Capture transient boundary layers by utilizing the one-dimensional turbulence model [4].

Model formulation

The ODT model aims to resolve all relevant scales of a turbulent flow along a notional line-of-sight
(‘ODT line’). Flow variables are resolved along this line on a dynamically adaptive grid [5]. Instanta-
neous flow profiles are evolved by deterministic di↵usion along the ODT domain, and a stochastic
process that models the e↵ects of turbulent advection, pressure fluctuations, and buoyancy forces that
are aligned with the ODT domain (z coordinate) [4, 6, 7].

•ODT governing equations for the Cartesian velocity components ui and the temperature T are

@ui
@t

+ Ei(↵) = ⌫
@2ui
@z2

,
@T

@t
+ ET = 

@2T

@z2
+

Qtot

⇢cp
,

where ⌫ is the kinematic viscosity, ⇢ the reference mass density, cp the specific heat capacity at
constant pressure,  = �/(⇢cp) the thermal di↵usivity with � the thermal di↵usivity, and Qtot the
heat sources and sinks.

• Stochastic terms Ei and ET represent the e↵ects of discrete turbulent eddy events in which the
triplet map models an eddy turnover (Fig. 1).

• The eddy rate ⌧�1(`e, z0; t) of a size-`e eddy event at location z0 at time t depends on the total
available eddy energy for the momentary flow state. The eddy rate reads [6, 7]

⌧�1 = C

q
2 `�2

e
�
Ekin + Epot � Z Evp

�
,

where Ekin and Epot denote the eddy kinetic and potential energy, respectively, and Evp is a viscous
penalty energy to suppress eddies below a viscous length scale [4].

• Fixed ODT model parameters C = 60, Z = 220, and ↵ = 2/3 are used here. Definitions are
identical to [7] but the calibration was performed for canonical Rayleigh–Bénard convection with
Pr . 1 [8].

(a) (b)

Figure 1: (a) Schematic of an eddy turnover. (b) Triplet map for an eddy event that covers the interval 0.2 6 z/H 6 0.8.

Flow configuration and model application

• Layer of fluid of height H for which wall-normal transport is resolved by a vertical ODT line (Fig. 2)

• Uniform constant gravity g = �g ez

•Oberbeck–Boussinesq fluid: linear equation of state, ⇢(T ) = ⇢0
⇥
1 � � (T � T0)

⇤
, where � is

the thermal expansion coe�cient, and subscript 0 denotes reference values

• Smooth adiabatic no-slip wall at bottom z = 0 and top z = H

•Heat sources/sinks: Qtot = Q(z) � hQiz , where Q(z) = (P/`) exp(�z/`) is the local heating
rate, �hQiz the spatial mean cooling rate, ` a prescribed length scale, and P the power influx [9].

• The flow is characterized by the Prandtl, Rayleigh, and Nusselt number,

Pr =
⌫


, Ra =

g � h�T iH3

⌫
, Nu =

PH

� h�T i ,

where �T = T |z=0�T |z=H/2 is a convenient definition of a wall-bulk temperature di↵erence
with temporal average h�T i. This is similar to [9].
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(c)

Figure 2: (a) Sketch of the set-up. The fluid is heated by the profile Q(z) with total power influx P analogous to [9].
(b) Vertical profiles of the instantaneous and temporal-averaged temperature, T and hT i, respectively. Tc denotes the
purely conductive analytic solution that has been compressed here to fit in the plotting range. (c) Vertical profiles of the
instantaneous and temporal-averaged horizontal velocity component u. Control parameters are Pr = 1, Ra = 108, and
`/H = 0.096. Reference scales are given by the flux temperature di↵erence �T0 = PH/� and the corresponding free-fall
velocity Uf ,0 =

p
g ��T0 L.

Scaling regimes of the heat transfer for Pr = 1

Grossmann & Lohse [10] showed that e↵ective scalings of the heat transfer result from bulk and
boundary-layer contributions. For temperature or heat-flux prescribed by boundary conditions, the
di↵erent contributions develop dynamically and can not be individually controlled (unless surface rough-
ness is used which introduces other complications). In the current configuration with internal heat
sources/sinks the problem is addressed by introducing the thermal length scale `/H as additional
control parameter to manipulate the thermal boundary layer.

• Fig. 3(a) shows multiple scalings of the heat transfer in terms of

Nu ⇠ Ra
p (`/H)q for fixed Pr = 1.

Reference experimental results [9] (black symbols) are shown together with ODT simulation results
(color symbols) that exhibit good qualitative and quantitative agreement.

• Various e↵ective scaling laws (black lines) are shown for comparison: p = 1/3 (Malkus [11]),
p = 2/7 (Shraiman & Siggia [12]), p = 1/2 (‘ultimate Rayleigh–Bénard’ [13]), and p ⇡ 0.55
(present ‘ultimate ODT’) scaling. Latter slightly exceeds ‘ultimate’ (turbulence-only) p = 1/2, which
is a strict upper bound for canonical Rayleigh–Bénard convection [14] but not for convection with
internal sources, where the maximum is pmax = 1 that has been achieved for laminar rolls [15].

• Fig. 3(b) shows rescaled data Nu/NuX vs. Ra/RaX, where the subscript ‘X’ indicates a notional
transition point. Following Bouillaut and colleagues [9], we solve for the intersection of the Malkus
(p = 1/3, q = 0) and the ‘ultimate ODT’ (p ⇡ 0.55, q = 1) scaling, that is,

NuX ⇠ Ra
1/3
X ⇠ (`/H)Ra0.55X .

This transformation collapses the ODT and reference data equally well.

• Fig. 3(c) shows the scaling exponent p vs. `/H for high Ra numbers. Here, p was obtained
by fitting Nu ⇠ Ra

p for a central region of each simulated `/H dataset. A plateau is visible on
the right. This is the mixing-length (‘ultimate’) regime for large `/H with p ⇡ 0.55. A logarithmic
variation of p can be discerned to the left in the transitional `/H range. The exponent p seems to
level again for very small `/H in between classical values p = 2/7 and 1/3.

•Conventional and unbiased (log-based) statistics are used to demonstrate statistical conver-
gence. For the cases simulated, the methods yield virtually identical results.
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Figure 3: Scaling regimes of the heat transfer in turbulent thermal convection with internal sources/sinks at Pr = 1.
(a) Ra number and `/H dependence of the Nu number. (b) Rescaled data collapses approximately. (c) Exponent p of
high-Ra e↵ective scalings for various prescribed `/H .

Conclusions

•ODT is a dimensionally reduced, stochastic turbulence model that aims to resolve wall-normal
(vertical) transport processes on all relevant scales of the flow.

•ODT reproduces and extrapolates the reference experiments [9] with fixed model parameters.

•ODT predicts a turbulent transition from the classical (p ⇡ 0.3) to the ‘ultimate’ regime with
scaling exponent p ⇡ 0.55, which slightly exceeds the ‘turbulence-only’ upper bound p = 1/2 but is
well within pmax = 1 [15].

•ODT predicts a transitional range involving logarithmic dependence of p on `/H that has not
previously been observed or proposed.

Forthcoming research

• Pr number dependence of the Nu number

• Control parameter dependences of the Reynolds (Re) number
• Assessment of upper bounds by variation of source term Q
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ODT captures fluctuation statistics as well as 
bulk properties of Rayleigh convection
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Figure 6. Magnitude of temperature fluctuations in the interior. Symbols are ODT
simulation results for ZC2 = 104 at !, Pr = 0.025; ", 0.7; !, 4; #, 1352; the solid line is
δTrms/"T = 0.37Ra−0.145, a reported fit to Pr = 0.7 experimental data by Niemela et al. (2000).

cell. The correlation is independent of the value of Z, which is expected since (4.4) is
based on large-scale transport. The value of C does matter, since this parameter sets
the large-eddy turnover rate and, hence, the overall heat transfer.

The larger values of the core temperature gradient (α " 0.1) shown in figure 5
occur at low Pr. The high molecular diffusivity in these cases generates a large
flux at the wall, which must be balanced in the core by turbulent transport along
a large temperature gradient. At low Pr, the large value of α probably influences
the dynamics of the thermal boundary layers and consequently plays a role in the
observed non-classical scaling of Nu with Ra.

Figure 6 shows the magnitude of the temperature fluctuations observed in the core
of the cell for the representative cases presented in figures 3 and 4. In this study,
the fluctuations δTrms are defined as the root-mean-square (r.m.s.) deviations from
the average temperature profile, and the ‘core’ is defined as the middle 1/4 of the
cell. This definition eliminates the spatial variability due to the mean temperature
gradient, making the data comparable to experimental data taken at a single point.
The experimentally observed temperature fluctuation magnitude for helium (Pr =0.7)
is also shown (Niemela et al. 2000), and the agreement with the ODT data for
ZC2 = 104 is excellent (errors less than 10%) at this Prandtl number. This value of
ZC2 also gave the best agreement with the corresponding Nusselt-number data.

The Pr dependence of ODT results for δTrms , which is evident in figure 6, is further
illustrated in figure 7. For any given ZC2, there is a minimum value of δTrms which
occurs at Pr ∼ 200 for ZC2 = 823, but shifts to Pr ∼ 50 for ZC2 = 104 and Pr ∼ 20
for ZC2 = 105. Figure 7 also shows that δTrms depends only weakly on ZC2 at low
Prandtl number. For comparison, experimental values for helium (Niemela et al.
2000) and water solutions at several Prandtl numbers at a larger Ra value (Daya &
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Figure 16. Rescaled probability density p of a core velocity fluctuation v. ODT simulation
data (solid line) for Pr = 5.5, Ra = 2 × 109 and ZC2 = 105. Experimental data from the cell
centre in two distinct geometries (!, cylindrical geometry; ", rectangular geometry) for the
same Ra and Pr are shown for comparison (Daya & Ecke 2001). Also shown is a Gaussian
p.d.f. (dashed line).

of the r.m.s. velocity fluctuation vrms used to scale the p.d.f.s is different for the two
geometries and for ODT, but the shape of the rescaled p.d.f. appears to be more
universal. The shape is nearly Gaussian, as has also been reported in the experiments
of Ashkenazi & Steinberg (1999) for Pr = 93. Off-centre velocity fluctuation p.d.f.s
(not shown) taken at y = 0.25Λ and y = 0.75Λ showed no significant dependence of
the p.d.f. shape on position within the cell core (in contrast to the temperature p.d.f.s).

4.4. Fluctuations in open systems

To further illustrate the importance of the thermal boundary layers in shaping the
core temperature fluctuation p.d.f., ODT simulations were also performed with jump-
periodic boundary conditions imposed on δT rather than fixed-temperature plates
at y = 0 and y = Λ. This eliminates the thermal boundary layer entirely, and the
simulation corresponds to an infinitely long unstable temperature gradient. Without
plates, there is no natural way to truncate the range of possible eddy sizes in the model,
so a largest eddy size equal to the periodicity length Λ was imposed. Simulations
with Rayleigh numbers in the range 3 × 109 ! RaC2 ! 3 × 1012 were performed for
Prandtl number values Pr = 0.1, 1.0 and 10, and ZC2 = 105. The resulting p.d.f.s had
the same shape in all cases; an example is shown in figure 17. The shape is close to a
Gaussian, unlike the p.d.f. which results from the simulation with fixed-temperature
plates, which is shown for comparison. The deviation from the Gaussian p.d.f. is
the result of the mixing of a temperature gradient which extends over many integral
scales, as has been observed experimentally by Gollub et al. (1991) and Jayesh &
Warhaft (1991). This effect has also been seen in stochastic models very similar to the
one presented here (Holzer & Pumir 1993; Wunsch 1998), and is arguably a common
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Figure 9. Rescaled probability density p of a temperature fluctuation δT (lines) for Pr = 5.5,
Ra= 2 × 109. The three lines correspond to ODT results for the three values of ZC2:
dash-dotted for ZC2 = 823, dashed for ZC2 = 104, and solid for ZC2 = 105. The shape is
independent of ZC2. Here, ⟨δT ⟩ = 0.5"T and δT 2

rms is the variance of the p.d.f. For comparison,
experimental data in two distinct cell geometries (!, cylindrical geometry; ", rectangular
geometry) with the same Ra and Pr are also shown (Daya & Ecke 2001).

It is worth recognizing that the separation of the temperature fluctuations into two
distinct sources is somewhat artificial, since it is obvious that all fluctuations must
ultimately originate in the thermal boundary layers. It is perhaps better to think of
the contribution of the core temperature gradient as representing the effects of fluid
elements which interact significantly with their environment while transiting from the
boundary layer to the cell centre (producing the average temperature gradient), while
the explicit boundary-layer contribution to (4.9) represents the effects of plumes which
reach the cell centre with minimal interaction. In ODT, the difference between these
two mechanisms arises because fluid elements may transit from boundary layer to
cell centre either indirectly, as a result of a large number of eddy mappings (allowing
some equilibration with the environment along the way) or directly as a result of only
one or two mappings (allowing little time for equilibration).

To study the statistics of the temperature fluctuations in the core of the cell, we
collected temperature values in narrow spatial intervals 1/64 of the cell height Λ
in length. Figure 9 shows the probability density function (p.d.f.) of temperature
values observed at the centre of the cell, normalized by δTrms (the square root of the
p.d.f. variance), for Pr= 5.5 and Ra =2 × 109. Results for all three values of ZC2 are
shown. Generally, ODT p.d.f. shapes do not appear to depend on the value of ZC2

except when extreme fluctuations (ten or more standard deviations) are considered.
The p.d.f. shape is approximately exponential out to at least 6 standard deviations.
Experimental data (Daya & Ecke 2001) for the same Ra and Pr are also shown in
figure 9, and the p.d.f. shapes are nearly identical. These data were collected in two
different geometries – a cylindrical cell and a square cell – yet the p.d.f. shapes match
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An internal wave can be idealized as sinusoidal 
vertical motion w = A sin(wt) of the ODT domain

By the equivalence principle, this generalizes 
gravity to g – dw/dt in the potential-energy 

term of the expression for t



Resources are available to learn more 
and use the model for research

MatLab package set up for staircase simulation –
Scott Wunsch

F77 code with detailed documentation, set up for channel flow 
simulation –

https://sites.google.com/site/odtresearch/codes

C++ code, efficient and easily customized –
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00063

https://sites.google.com/site/odtresearch/codes

