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Binary fluid convection: Dimensionless equations

ur+(u-Viu = —VP+PrR[T + SC|z + PrV?u,
T+ W-V)T = V2T,
Ci+(u-V)C = 7V2C-V2T,

where u = (u, w) in (x, z) coordinates. The Prandtl number Pr, Lewis
number 7, Rayleigh number R and the separation ratio S are defined by
Pr=— T= R

gaTA Tf?’
KT’ KT’ vET

v KcC ac
- S = 7550ret
aT

The boundary conditions are

at z=1: u=w=T =n,=0,

at z=0: u=w=T-1=n,=0,
with periodic boundary conditions (PBC) with period I in x. Here
n = C — T whose gradient is proportional to the mass flux. We are

interested in the regime 7 < 1, S < 0 (double diffusive convection).
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Dispersive chaos: Bretherton and Spiegel (1983)
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Formation of a convecton
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Batiste et al., J. Fluid Mech. 560, 149-158 (2006)
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Relaxation oscillations at R = 1774
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Formation of a convecton
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Bifurcation diagram
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Odd and even convectons

(a) odd branch (b) even branch
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Odd and even convectons

@ Odd branch
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(b) Even branch
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Both are stationary structures because of reflection symmetry:
R> o Ry (odd convectons) and R; (even convectons)
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Stability of the convectons
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Depinning: [ = 60
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Swift-Hohenberg equation in one spatial dimension
The Swift-Hohenberg equation

ur = ru — (g2 +8§)2u+ f(u)

is very simple but has very remarkable properties. These are a consequence
of the following:

Fourth order in space

e Intrinsic length scale 27/qc
o Bistability due to competing nonlinear terms: f(u) = b3u® — bsu®
@ Symmetries: Ry : x — —x,u— u, R : x = x,u — —u
@ Variational dynamics
_ OF
Uy = *Ev

where

F:/de{—;ru2+;[( + %) / f(v }

In the following we think of F|[u] as the (free) energy of the system
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Snakes-and-ladders structure of the pinning region: SH35
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FIG. 1. The snakes-and-ladders structure of the pinning region
—0.713 < r < —0.626 in SH35, Eq. (1), with b3 = 2, ¢ = 0.
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Depinning: SH23
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Collisions of LS: SH35 with broken R, symmetry
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Asymmetric states are no longer stationary
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Collision of like pulses for r = —0.65, ¢ = 0.1




Collision of unlike pulses: ¢ = 0.1, r = —0.65
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Collision of unlike pulses: ¢ = 0.1, r = —0.65
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Binary fluid convection with S = —0.1, 7 =0.01, 0 =7

Newton's law of cooling:

(1-p5)0,+p0=0 on z=1,

Here 8 = 1:
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Mercader et al., JFM 722, 240 (2013)
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[=20,5=-05 06=0.6,7=0.03, R=2750, 5 =0.9
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Binary fluid convection with heat loss: 3 = 0.9

t=1000

1000 ==

900

800

700

600

500

time

400

AMELY
300 =224 i
LS
e
100 g

Edgar Knobloch (UC Berkeley) Localized structures 2 March 2021 21/1



Binary fluid convection with heat loss: 3 = 0.9
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Binary fluid convection with heat loss: 3 = 0.9
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Conclusions

The fidelity of the SHE as a model of double diffusive convection is quite
astonishing. This is despite

@ its simplicity and even its variational structure
@ no double diffusive effects are explicitly included

@ the model cannot in fact be 'derived’ by any systematic procedure

It is a 'minimal’ model that contains an intrinsic scale and bistability, no
more, no less.

Is this a case (in the immortal words of P Diamond) of
@ all models are wrong, but some models are useful, or

@ some models are too good to be true, others are too true to be good?
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