Stanley, me and Life on the Light-Cone

Lars Brink

Stanleyfest Feb 13, 2009

In 198I Michael Green, John Schwarz and I computed the four-point one-loop S-matrix element for $N=4$ Yang-Mills and $N=8$ Supergravity and found that it is given by a box-diagram with kinematical factors.

It looked to me as if there was a scalar field theory behind.

How can one describe these theories with a scalar field? (Wrong but useful idea!)

$\mathrm{N}=4$ in the light-cone gauge

Make the gauge choice $A^{+}=0$
Choose $x^{+}=\frac{1}{\sqrt{2}}\left(x^{0}+x^{3}\right)$ as the time.
We can then solve for A^{-}since it satisfies a kinetic equation of motion and linearly combine the transverse physical degrees of freedom as
$A=1 / \sqrt{ } 2\left(A^{1}+i A^{2}\right)$ and its c.c

For the fermions we choose

$$
\Psi=1 / 2 \gamma_{+} \gamma_{-} \Psi+1 / 2 \gamma_{-} \gamma_{+} \Psi=\Psi_{+}+\Psi_{-}
$$

Similarly $\Psi^{\text {- satisfies a kinetic equation of motion and }}$ can be eliminated and the two-component Ψ_{+}can be written as a complex Grassmann odd field Ψ.

We can now introduce a superspace

$$
x^{ \pm}, \quad x, \quad \bar{x}, \quad \theta^{m}, \quad \bar{\theta}_{n}
$$

and span the $\mathrm{N}=4$ supersymmetry

$$
\begin{aligned}
\left\{Q_{+}^{m}, \bar{Q}_{+n}\right\} & =-\sqrt{2} \delta_{n}^{m} P^{+} \\
\left\{Q_{-}^{m}, \bar{Q}_{-n}\right\} & =-\sqrt{2} \delta_{n}^{m} P^{-} \\
\left\{Q_{+}^{m}, \bar{Q}_{-n}\right\} & =-\sqrt{2} \delta_{n}^{m} P,
\end{aligned}
$$

When we act straight on a field we write q

The kinematical q 's will be represented by

$$
q_{+}^{m}=-\partial^{m}+\frac{i}{\sqrt{2}} \theta^{m} \partial^{+}, \bar{q}_{+n}=\bar{\partial}_{n}-\frac{i}{\sqrt{2}} \bar{\theta}_{n} \partial^{+}
$$

and the dynamical ones as

$$
q_{-}^{m}=\frac{\bar{\partial}}{\partial^{+}} q_{+}^{m}, \quad \bar{q}_{-m}=\frac{\partial}{\partial^{+}} \bar{q}_{+m} .
$$

On this space we can also represent "chiral" derivatives anticommuting with the supercharges Q.
$d^{m}=-\partial^{m}-\frac{i}{\sqrt{2}} \theta^{m} \partial^{+}, \quad \bar{d}_{n}=\bar{\partial}_{n}+\frac{i}{\sqrt{2}} \bar{\theta}_{n} \partial^{+}$.
To find an irreducible representation we have to impose the the chiral constraints
$d^{m} \phi=0 ; \quad \bar{d}_{m} \bar{\phi}=0$,
on a complex superfield $\phi\left(x^{ \pm}, x, \bar{x}, \theta^{m}, \bar{\theta}_{n}\right)$. The solution is then that
$\phi=\phi\left(x^{+}, y^{-}=x^{-}-\frac{i}{\sqrt{2}} \theta^{m} \bar{\theta}_{m}, x, \bar{x}, \theta^{m}\right)$.
It is particularly interesting to study the cases $N=4 \times$ integer. For those values one can impose a further condition on the superfield ϕ namely the "inside out" condition

$$
\begin{aligned}
& \bar{d}_{m_{1}} \bar{d}_{m_{2}} \ldots \bar{d}_{m_{N / 2-1}} \bar{d}_{m_{N / 2}} \phi= \\
& \frac{1}{2} \epsilon_{m_{1} m 2} \ldots m_{N-1} m_{N} d^{m_{N / 2+1}} d^{m_{N / 2+2}} \ldots d^{m_{N-1}} d^{m_{N}} \bar{\phi}
\end{aligned}
$$

$$
\begin{aligned}
N= & 4 \\
\phi(y) & =\frac{1}{\partial^{+}} A(y)+\frac{i}{\sqrt{2}} \theta^{m} \theta^{n} \bar{C}_{m n}(y) \\
& +\frac{1}{12} \theta^{m} \theta^{n} \theta^{p} \theta^{q} \epsilon_{m n p q} \partial^{+} \bar{A}(y) \\
& +\frac{i}{\partial^{+}} \theta^{m} \bar{\chi}_{m}(y)+\frac{\sqrt{2}}{6} \theta^{m} \theta^{n} \theta^{p} \epsilon_{m n p q} \chi^{q}(y) .
\end{aligned}
$$

The full action could the be found as

$$
\begin{aligned}
& \mathcal{S}=-\int d^{4} x \int d^{4} \theta d^{4} \bar{\theta} \\
&\left\{\begin{array} { l }
{ \phi ^ { a } } \\
{ \frac { \square } { \partial + 2 } \phi ^ { a } + \frac { 4 g } { 3 } f ^ { a b c } (\frac { 1 } { \partial ^ { + } } \overline { \phi } ^ { a } \phi ^ { b } \overline { \partial } \phi ^ { c } + \text { c.c. }) } \\
{ - }
\end{array} g ^ { 2 } f ^ { a b c } f ^ { a d e } \left(\frac{1}{\partial^{+}}\left(\phi^{b} \partial^{+} \phi^{c}\right) \frac{1}{\partial^{+}}\left(\bar{\phi}^{d} \partial^{+} \bar{\phi}^{e}\right)\right.\right. \\
&\left.\left.+\frac{1}{2} \phi^{b} \bar{\phi}^{c} \phi^{d} \bar{\phi}^{e}\right)\right\} .
\end{aligned}
$$

With this action we (Brink, Lindgren and Nilsson 1982) proved that the perturbation expansion is finite.

We also realized that the maximal supergravity could be written in this way

$$
\begin{aligned}
& N=8 \\
& \phi(y)=\frac{1}{\partial^{+^{2}}} h(y)+i \theta^{m} \frac{1}{\partial+^{2}} \bar{\chi}_{m}(y) \\
& \ldots+\theta^{m n p r} \bar{C}_{m n p r}(y) \\
& \cdots+\tilde{\theta}_{m}^{(7)} \partial^{+} \chi^{m}(y)+\tilde{\theta}^{(8)} \partial^{+^{2}} \bar{h}(y),
\end{aligned}
$$

How do we construct the interacting theory?
We will only consider massless theories so we solve the condition $p^{2}=0$. We then find

$$
p^{-}=\frac{p \bar{p}}{p^{+}} .
$$

The generator p^{-}is really the Hamiltonian.

We have to find representations to the superPoincaré algebra.

```
Generators that involve the "time" are called
dynamical (or Hamiltonians) and the others
kinematical.
```

The dynamical ones are non-linearly realized.
We have to construct all of them.

The hard ones are rotations into "time". The linear part is
$j^{-}=i x \frac{\partial \bar{\partial}}{\partial^{+}}-i x^{-} \partial+i\left(\theta^{\alpha} \bar{\partial}_{\alpha}+\frac{i}{4 \sqrt{2} \partial^{+}}\left(d^{\alpha} \bar{d}_{\alpha}-\bar{d}_{\alpha} d^{\alpha}\right)\right) \frac{\partial}{\partial^{+}}$

The $N=8$ Supergravity action to first order is then

$$
\int d^{4} x \int d^{8} \theta d^{8} \bar{\theta} \mathcal{L} \equiv \int \mathcal{L},
$$

where,

$$
\mathcal{L}=-\bar{\phi} \frac{\square}{\partial^{+4}} \phi+\left(\frac{4 \kappa}{3 \partial^{+4}} \bar{\phi} \bar{\partial} \bar{\partial} \phi \partial^{+^{2}} \phi-\frac{4 \kappa}{3 \partial^{+4}} \bar{\phi} \bar{\partial} \partial^{+} \phi \bar{\partial} \partial^{+} \phi+\text { c.c. }\right)
$$

How do we construct the four-point function?
We can do it by trial and error.
Too hard.

Instead we found a remarkable property of maximally supersymmetric theories.
(with Ananth and Ramond)

The Hamiltonian as a Quadratic Form

The usual relation is that

$$
H=\frac{1}{4}\left\{Q_{-}^{m}, Q_{-m}\right\}
$$

For both $N=4$ and $N=8$

$$
H=\int \delta_{\bar{q}_{-m}} \bar{\phi} \delta_{q_{-} m} \phi
$$

Not an anticommutator, but a quadratic form.
With this form we could run a Mathematica program comparing with the four-point function of gravity.

The result was a four-point coupling with 96 terms. (In the covariant form there are about 5000 terms.) with Ananth, Heise and Svendsen.

Higher Symmetries for $N=4$ YangMills Theory

We know that the $d=4$ theory is conformally invariant, i.e. under $\operatorname{PSU}(2,2 \mid 4)$ even for the quantum case. We can in fact construct the whole theory by closing the conformal algebra by guessing the correct dynamical supersymmetry generator Q_{-}.
(With Kim and Ramond)

Higher Symmetries for $N=8$ Supergravity Theory

$N=8$ Supergravity, unlike $N=4$ Yang-Mills, is not superconformal invariant; however, it does have the non-linear Cremmer-Julia $E_{7(7)}$ symmetry.

How do we implement the $E_{7(7)}$ symmetry?
Go back to covariant component form (Cremmer, Julia and Freedman, de Wit)
$\mathcal{L}=\mathcal{L}_{S}+\mathcal{L}_{V}+\mathcal{L}_{\text {others }}$
\mathcal{L}_{S} is a Coleman-Wess-Zumino non-linear Lagrangian. The $E_{7(7)}$ is clear.
\mathcal{L}_{V} can be written as

$$
\mathcal{L}_{V}=-\frac{1}{8} F^{\mu \nu i j} G_{\mu \nu}^{i j}
$$

The Lagrangian is quadratic in the field strengths. Introduce the self-dual complex field strengths

$$
\mathbb{F}^{\mu \nu i j}=\frac{1}{2}\left(F^{\mu \nu i j}+i \widetilde{F}^{\mu \nu i j}\right)
$$

and
$\mathbb{G}^{\mu \nu i j}=\frac{1}{2}\left(G^{\mu \nu i j}+i \widetilde{G}^{\mu \nu i j}\right)$
The equations of motion are given by
$\partial_{\mu} G^{\mu \nu i j}=\partial_{\mu}\left(\mathbb{G}^{\mu \nu i j}+\overline{\mathbb{G}}^{\mu \nu i j}\right)=0$,
while the Bianchi identities read
$\partial_{\mu} \widetilde{F}^{\mu \nu i j}=\partial_{\mu}\left(\mathbb{F}^{\mu \nu i j}-\overline{\mathbb{F}}^{\mu \nu i j}\right)=0$.

Assemble in one column vector with 56 complex entries

$$
Z^{\mu \nu}=\binom{\mathbb{T}^{\mu \nu i j}+\mathbb{F}^{\mu \nu i j}}{\mathbb{G}^{\mu \nu i j}-\mathbb{F}^{\mu \nu i j}} \equiv\binom{X^{\mu \nu a b}}{Y^{\mu \nu}{ }_{a b}},
$$

where a, b are $S U(8)$ indices, with upper(Iower) antisymmetric indices for $28(\overline{28})$.

This is a 56 under $E_{7(7)}$.
The 70 transformations are

$$
\begin{aligned}
\delta X^{\mu \nu a b} & =\bar{\Xi}^{a b c d} Y^{\mu \nu} c d \\
\delta Y^{\mu \nu} a b & =\bar{\Xi}_{a b c d} X^{\mu \nu c d}
\end{aligned}
$$

We now specialize to the light-cone gauge. We choose $A^{+}=0$ and solve for A^{-}. We then make non-linear field redefinitions, $A^{i j} \rightarrow B^{i j}$ and $C^{i j k l} \rightarrow D^{i j k l}$ to get rid of "time" derivatives" in the interaction terms.

This will mix up the fields and the Hamiltonian is no longer quadratic in $B^{i j}$.

We can now read off the $E_{7(7)} / S U(8)$ transformations in the vector and scalar fields.

However, the other fields now take part in the transformations!

The $\frac{E_{7(7)}}{\operatorname{SU}(8)}$ quotient symmetry must commute with the other symmetries in particular with the supersymmetry. $\left[\delta_{70}, \delta_{S}\right] \varphi=0$.
(There is no $E_{7(7)}$ supergroup.)
By using that we get the transformations for all fields in the multiplet.

How can $\frac{E_{7(7)}}{S U(8)}$ commute when $S U(8)$ does not, and

$$
\left[\delta_{70}, \delta_{70}\right]=\delta_{S U(8)} ?
$$

Consider the Jacobi identity
$\left(\left[\left[\delta_{70}, \delta_{70}\right], \delta_{S}\right]+\left[\left[\delta_{S}, \delta_{70}\right], \delta_{70}\right]+\left[\left[\delta_{70}, \delta_{S}\right], \delta_{70}\right]\right) \varphi=0$
Since $\left[\delta_{S}, \delta_{70}\right] \delta_{70} \varphi \neq 0$, it works! $\delta_{70 \varphi}$ nonlinear! We only claim that $\left[\delta_{S}, \delta_{70}\right] \varphi=0$. All fields including the graviton transform under $\frac{E_{7(7)}}{S U(8)}$ and into each other.

Some of the transformations

Vectors:

$$
\begin{align*}
\delta \bar{B}_{i j}=-\kappa \Xi^{k l m n} & \left(\frac{1}{4} \bar{D}_{i j k l} \bar{B}_{m n}+\frac{1}{4!} \frac{1}{\partial^{+}} \bar{D}_{k l m n} \partial^{+} \bar{B}_{i j}-\frac{1}{4!} \epsilon_{i j k l m n r s} \frac{1}{\partial^{+}} B^{r s} \partial^{+} h\right. \\
& \left.+\frac{i}{3!} \frac{1}{\partial^{+}} \bar{\chi}_{k l m} \bar{\chi}_{i j n}-\frac{i}{3!} \epsilon_{i j k l m r s t} \frac{1}{\partial^{+}} \chi^{r s t} \bar{\psi}_{n}\right) \\
+\kappa \bar{\Xi}_{i j k l} & \frac{1}{\partial^{+}}\left(\frac{1}{4} D^{k l m n} \partial^{+} \bar{B}_{m n}-\frac{1}{\partial^{+}} B^{k l} \partial^{+2} h\right. \\
& \left.+\frac{i}{4(3!)^{2}} \bar{\chi}_{m n p} \bar{\chi}_{r s t} \epsilon^{k l m n p r s t}-3 i \frac{1}{\partial^{+}} \chi^{k l n} \partial^{+} \bar{\psi}_{n}\right) \tag{1}
\end{align*}
$$

Gravitini:

$$
\begin{align*}
\boldsymbol{\delta} \bar{\psi}_{i}=-\kappa & \Xi^{m n p q}\left(\frac{1}{4!\cdot 3!} \epsilon_{m n p q i r s t} D^{r s t u} \bar{\psi}_{u}+\frac{1}{4!} \frac{1}{\partial^{+}} \bar{D}_{m n p q} \partial^{+} \bar{\psi}_{i}+\frac{1}{4!} \bar{D}_{m n p q} \bar{\psi}_{i}\right. \\
& \left.-\frac{1}{4!} \epsilon_{m n p q i r s t} \frac{1}{\partial^{+}} \chi^{r s t} \partial^{+} h+\frac{1}{4} \bar{\chi}_{i m n} \bar{B}_{p q}+\frac{1}{3!} \frac{1}{\partial^{+}} \bar{\chi}_{m n p} \partial^{+} \bar{B}_{i q}\right) \tag{2}
\end{align*}
$$

Gravition:

$$
\begin{equation*}
\boldsymbol{\delta} h=-\kappa \Xi^{m n p q}\left(\frac{1}{4!} \frac{1}{\partial^{+}} \bar{D}_{m n p q} \partial^{+} h+\frac{1}{8} \bar{B}_{m n} \bar{B}_{p q}+\frac{i}{\partial^{+}} \bar{\chi}_{m n p} \bar{\psi}_{q}\right) . \tag{3}
\end{equation*}
$$

We then find that we can write the order κ transformation as

$$
\begin{aligned}
\delta \varphi=\frac{\kappa}{4!} \equiv & m n p q \\
& \frac{1}{\partial^{+} 2}\left(\bar{d}_{m} \bar{d}_{n} \bar{d}_{p} \bar{d}_{q} \frac{1}{\partial^{+}} \varphi \partial^{+3} \varphi\right. \\
& -4 \bar{d}_{m} \bar{d}_{n} \bar{d}_{p} \varphi \bar{d}_{q} \partial^{+2} \varphi \\
& \left.+3 \bar{d}_{m} \bar{d}_{n} \partial^{+} \varphi \frac{\bar{d}_{p}}{d_{q}} \partial^{+} \varphi\right)+\cdots .
\end{aligned}
$$

This expression is in fact unique! It can be rewritten in a very efficient form

$$
\frac{\kappa}{4!} \equiv m n p q\left(\frac{\partial}{\partial \eta}\right)_{m n p q} \frac{1}{\partial^{+2}}\left(e^{\left.\eta \hat{\bar{d}} \partial^{+3} \varphi e^{-\eta \hat{\bar{d}}} \partial^{+3} \varphi\right)\left.\right|_{\eta=0}, ~, ~ . ~}\right.
$$

where $\hat{d}=\frac{\bar{d}}{\partial^{+}}$.

The Hamiltonian

We write
$\delta_{s}^{d y n} \varphi=\delta_{s}^{d y n(0)} \varphi+\delta_{s}^{d y n(1)} \varphi+\delta_{s}^{d y n(2)} \varphi+\mathcal{O}\left(\kappa^{3}\right)$

We can now require

$$
\left[\delta_{70}, \delta_{s}^{d y n}\right] \varphi=0
$$

Here we can use the inhomogeneity of the 70 transformation

$$
\left[\delta_{70}(-1), \delta_{s}^{d y n(2)}\right] \varphi+\left[\delta_{70}^{(1)}, \delta_{s}^{d y n(0)}\right] \varphi=0
$$

This gives the order κ^{2} dynamical supersymmetry. We can the use the quadratic form to find the Hamiltonian to order κ^{2}. Much simpler than before!

Possible counterterms for $\mathrm{N}=8$

Let us check first in gravity. We can write the three point coupling as

$$
\begin{aligned}
\delta_{H}^{\kappa} h & =\left.\kappa \partial^{+n}\left[e^{a \hat{\partial}} \partial^{+m} h e^{-a \hat{\partial}} \partial^{+m} h\right]\right|_{a^{2}} \\
& \left.\equiv \kappa \partial^{+n}\left(\frac{\partial}{\partial a}\right)^{2}\left[e^{a \hat{\partial}} \partial^{+m} h e^{-a \hat{\partial}} \partial^{+m} h\right]\right|_{a=0}
\end{aligned}
$$

A possible one-loop counter term is

$$
\begin{gathered}
\delta_{H}^{g_{1}} h=\left.\kappa^{3} \partial^{+n}\left[E \partial^{+m} h E^{-1} \partial^{+m} h\right]\right|_{a^{3}, b}, \\
E=e^{a \hat{\partial}+b \hat{\partial}} \quad \text { and } \quad E^{-1}=e^{-a \hat{\partial}-b \hat{\partial}},
\end{gathered}
$$

Consistent with the algebra for two choices of m and n

This can in fact be generalized to all orders.

$$
\begin{aligned}
\delta_{H}^{g_{l}} h & =\left.\kappa^{2 l+1} \partial^{+}\left[E \partial^{+l} h E^{-1} \partial^{+l} h\right]\right|_{a^{2+l}, b^{l}} \\
\delta_{H}^{g_{l}} h & =\left.\kappa^{2 l+1} \frac{1}{\partial^{+3}}\left[E \partial^{+(l+2)} h E^{-1} \partial^{+(l+2)} h\right]\right|_{a^{2+l}, b^{l}}
\end{aligned}
$$

There is another series starting with

$$
\delta_{H}^{g_{2}} h=\left.\kappa^{5} \frac{1}{\partial^{+3}}\left[E \partial^{+4} \bar{h} E^{-1} \partial^{+4} \bar{h}\right]\right|_{b^{6}}
$$

We are interested in counterterms which are nonzero when we use the equation of motion.

$$
\partial^{-} h=\delta_{H} h=\frac{\partial \bar{\partial}}{\partial^{+}} h+\mathcal{O}(\kappa) .
$$

All but the third terms can be written as \square (..h...h)

There are no three-point counter terms for $N=8$

$$
\delta_{H} \phi=\ldots(. . \bar{\phi} \bar{\phi})
$$

since the r.h.s. is not chiral.

When we consider the four-point coupling we have to use the $\mathrm{E}_{7(7)}$ symmetry. Remember how we obtain the four-point coupling.

$$
\left[\delta_{70}{ }^{(-1)}, \delta_{s}^{d y n(2)}\right] \varphi+\left[\delta_{70}{ }^{(1)}, \delta_{s}^{d y n(0)}\right] \varphi=0
$$

The terms talk to each other pairwise. They have the same number of derivatives.

A four-point counterterm $\delta_{s, c}^{d y n}(2)$ must satisfy

$$
\left[\delta_{70}(-1), \delta_{\delta, c}^{d y n n}(2)\right] \varphi=0
$$

Furthermore it has to satisfy all the commutations rules with the full $N=8$ superalgebra.
Well-defined problem but algebraically difficult.
We still do not have the final result.
I wish you had been part of the collaboration, Stanley!
Congratulations to the first 80 !

