Large N Gauge Theory on the Lightcone Worldsheet
 (arXiv:0809.1085)

Charles B. Thorn
University of Florida

String Basis for Field/String Duality

Open String with $S U(N)$ Chan-Paton $\underset{\alpha^{\prime} \rightarrow 0}{\Longrightarrow} S U(N)$ Yang-Mills (Scherk, Neveu and Scherk, 1971)

Left side a regulated version of right side

Open String Trees \Rightarrow All String Tree and Loop Diagrams $\left(\alpha^{\prime}>0\right)(1970)$

D3-branes and 4D QFT (Polchinski, 1989)

$$
x^{M}(\sigma, \tau): \begin{cases}\text { Neumann b.c.'s } & M=0,1,2,3 \equiv \mu \\ \text { Dirichlet b.c.'s } & M=4,5,6,7,8,9\end{cases}
$$

't Hooft's $N \rightarrow \infty$:
$\sum(\text { Planar Open String Loops })_{D 3} \equiv \sum(\text { Closed String Trees })_{\text {bckgrnd }}$

Left Side $\underset{\alpha^{\prime} \rightarrow 0}{\Longrightarrow} N=\infty$ Gauge Theory in 4 d
Right Side $\underset{\substack{\alpha^{\prime} \rightarrow 0 \\ g^{2} N \rightarrow \infty}}{\Longrightarrow}$ Classical gravity
If $g^{2} N=O(1)$, right side stays stringy as $\alpha^{\prime} \rightarrow 0$.

Theme of this talk:

Why not try planar graph summation with $\alpha^{\prime}>0$?

Summing Planar Diagrams on the Lightcone

Mandelstam's lightcone path integral formalism provides a systematic approach to this problem

Potentially an effective numerical assault on the problem

Mandelstam Interacting String Diagram:

$T=i x^{+}=i(t+z) / \sqrt{2}, \quad p^{+}=\left(p^{0}+p^{z}\right) / \sqrt{2}$.
Diagram describes time evolution of a system of open strings, breaking and rejoining as shown by the horizontal lines.

For critical open string, worldsheet path integral uses lightcone action for the free open string:

$$
S_{l . c .}=\frac{1}{2} \int_{0}^{T} d \tau \int_{0}^{P^{+}} d \sigma\left[\left(\frac{\partial \boldsymbol{x}}{\partial \tau}\right)^{2}+T_{0}^{2}\left(\frac{\partial \boldsymbol{x}}{\partial \sigma}\right)^{2}\right]
$$

$\sum($ planar diagrams $)=\sum(\#$, length, location of horizontal lines $)$.

For each beginning and end of a horizontal line there is a factor of string coupling $g \times$ (prefactor).

Normalization

Lorentz covariance: Vertex $\sim \frac{1}{\sqrt{P_{1}^{+} P_{2}^{+}\left(P_{1}^{+}+P_{2}^{+}\right)}}$
So under $P_{i}^{+} \rightarrow \lambda P_{i}^{+}$, above diagram should scale as $\lambda^{-3 / 2}$.
Worldsheet Lattice calculation gives $\lambda^{-(D-2) / 16}$ for bosonic string $D=26$ for Lorentz covariance (Giles-CBT,1977)

Hearing the Shape of a (Polygonal) Drum (Mark Kac, 1967)
$\operatorname{Tr} e^{t \nabla^{2} / 2} \sim \frac{\text { Area }}{2 \pi t}-\frac{\text { Perimeter }}{4 \sqrt{2 \pi t}}+\sum_{\text {corners }} \frac{1}{24}\left(\frac{\pi}{\theta}-\frac{\theta}{\pi}\right)+o(1)$

Lightcone vertex is a 360° corner. Putting $\theta=2 \pi$,

$$
\frac{1}{24}\left(\frac{\pi}{\theta}-\frac{\theta}{\pi}\right) \rightarrow-\frac{1}{16}
$$

Notice that rounding the corner would spoil this nice result
A case where smoother is NOT better!

Lightcone Worldsheet for Planar Sum

Mark the presence or absence of a horizontal line at any point by an Ising spin variable $S(\sigma, \tau)=1,0$.

Worldsheet Lattice (Bosonic String, Giles-CBT, 1977):

$$
\begin{aligned}
S \rightarrow & \frac{1}{2} \sum_{i j}\left[\left(x_{i}^{j+1}-x_{i}^{j}\right)^{2}+T_{0}^{2} S_{i}^{j}\left(x_{i+1}^{j}-x_{i}^{j}\right)^{2}\right] \\
& -\sum_{i j}\left[S_{i}^{j}\left(1-S_{i}^{j+1}\right)+S_{i}^{j+1}\left(1-S_{i}^{j}\right)\right] \ln g
\end{aligned}
$$

Monte Carlo simulations very feasible for bosonic string (Peter Orland).

Less promising with worldsheet fermions (NSR, Superstring)

Alternate Approach to Planar Sum (Kruczenski)

A geometric sum: adds a hole operator to the free closed string Hamiltonian.

String dual for given QFT

AdS/CFT Paradigm:
Lift $\mathcal{N}=4$ Yang-Mills to NSR/GSO Open String ending on D3-branes in 10D Minkowski space-time

Broken 10D translation invariance:
p^{μ} has 4 space-time components.
Bulk of open string vibrates in all 10 space-time dimensions.
Massless states:

- an adjoint vector: vibrations || D3-branes,
- 6 adjoint scalars: vibrations \perp D3-branes,
- 4 Majorana fermions.

An Open String for Pure 4D Yang-Mills?

Delete fermionic states (no R sector)
Even G-parity sector of Neveu-Schwarz (NS+) open string
Simplest choice for YM: NS+ model in 4D
no extra scalars and massive would-be graviton -but ...

Conformal anomaly \Rightarrow technical complications in closed sector
Keeping 10D \Rightarrow conformal anomaly cancels.
But: Usual D3-brane trick $\Rightarrow 6$ massless scalars in the 4D theory

Consider NS open string in $D=9$:

$$
Z(w)=\left(1-w^{1 / 2}\right) \frac{\prod_{r}\left(1+w^{r}\right)^{8}}{\prod_{n}\left(1-w^{n}\right)^{8}}
$$

Compared to 10D NS open string ending on a D8-brane:

$$
Z(w)=\frac{\prod_{r}\left(1+w^{r}\right)^{8}}{\prod_{n}\left(1-w^{n}\right)^{8}}
$$

First case: 7 massless states (9D gluon)
Second case: $8=7+1$ massless states (9D gluon +1 scalar)
Goal: Modify D8 b.c.'s to achieve same spectrum

T-dual D-brane conditions

For a D8-brane at $x^{9}=0$:

$$
x^{9}(0, \tau)=x^{9}(\pi, \tau)=0
$$

T-dual transform $x^{9}(\sigma, \tau) \rightarrow y^{9}(\sigma, \tau)$:

$$
\frac{\partial y^{9}}{\partial \sigma}(0, \tau)=\frac{\partial y^{9}}{\partial \sigma}(\pi, \tau)=0
$$

Then the zero mode of y^{9} :

$$
p_{0}^{9} \equiv \int d \sigma \dot{y}^{9}(\sigma, \tau)=x^{9}(\pi, \tau)-x^{9}(0, \tau)=0
$$

SU(2) Invariance

Interpret y^{9} as a $c=1$ conformal scalar field, compactified on a circle: $p_{0}^{9}=2 \pi n / R$.
$\mathrm{SU}(2)$ symmetry emerges when R is such that $|0, \pm 2 \pi / R\rangle$ are massless.
$\left(b_{-1 / 2}^{9}|0\rangle,|0, \pm 2 \pi / R\rangle\right)$ transform as a vector
Invariance under $\mathrm{SU}(2) \Rightarrow n=0$ and projects out $b_{-1 / 2}^{9}|0\rangle$
Repeat for $x^{8}, x^{7}, x^{6}, x^{5}, x^{4}$:
$\mathrm{SU}(2)$ invariance for each of 6 extra coordinates, projects out all massless scalars in open string state space.

Vertex operator construction of $\mathrm{SU}(2)$ generators

$$
\begin{aligned}
J_{3} & =p_{0}^{I} \sqrt{2 \alpha^{\prime}} \\
J_{ \pm} & =\sqrt{2} \oint \frac{d z}{2 \pi i z} H^{I}(z): e^{ \pm i y^{I}(z) / \sqrt{2 \alpha^{\prime}}}:
\end{aligned}
$$

$: e^{i y^{I}(z) / \sqrt{2 \alpha^{\prime}}}$: is a bosonized fermionic field, when acting on the states with $p_{0}^{I} \in \mathbb{Z} / \sqrt{2 \alpha^{\prime}}$.
$\left[J_{+}, J_{-}\right]=2 J_{3}$.

Essential point:
$\left[J_{ \pm}, G_{r}\right]=\left[J_{ \pm}, L_{n}\right]=0$ on this subspace,
so the $\mathrm{SU}(2)$ commutes with physical state conditions

Manifestly O(3) Invariant Description

Replace each bosonic y^{I} with a pair of fermion fields H_{1}^{I}, H_{2}^{I}
Call original $H^{I} \equiv H_{3}^{I}$.
Then H_{a} transform as a vector under $O(3)$ with generators

$$
J^{a}=\epsilon^{a b c} \oint \frac{d z}{2 \pi i z} H_{b}(z) H_{c}(z)
$$

Nonabelian D-brane condition: $J^{a} \mid$ Phys $\rangle=0$.

Scattering Amplitudes

Trees are subset of 10D NS trees:

Take external strings only in even G-parity states invariant under $6 \mathrm{SU}(2)$'s associated with the 6 extra dimensions.

Noninvariant states decouple, including the massless scalars:
$b_{-1 / 2}^{I}|0, p\rangle, I=4,5, \ldots, 9$

One Loop and Closed Strings

Loops require projectors onto $\mathrm{SU}(2)$ invariant states.
At one loop simply multiplies partition function by $\left(1 \mp w^{1 / 2}\right)^{6}$ Also loop momentum integral only over $p^{\mu}, \mu=0,1,2,3$

After Jacobi transformation to cylinder variables $\ln q=2 \pi^{2} / \ln w$, these differences produce the extra factors

$$
\left[\sqrt{\frac{-\pi}{\ln q}}\left(1 \mp w^{1 / 2}\right)\right]^{6}=\left\{\begin{array}{l}
{\left[\int d \mu q^{\mu^{2} / 4} \sin ^{2} \frac{\mu}{2 \sqrt{2}}\right]^{6}} \\
{\left[\int d \mu q^{\mu^{2} / 4} \cos ^{2} \frac{\mu}{2 \sqrt{2}}\right]^{6}}
\end{array}\right.
$$

relative to the usual one loop integrand in $D=10$.

O(3) Projectors

Projector for the I th $\mathrm{SU}(2)$:

$$
P_{I}=\int d R e^{i \theta_{a} J_{I}^{a}}, \quad J_{I}^{a}=\int d \sigma \mathcal{J}_{I}^{a}(\sigma)
$$

$d R$ is the $\mathrm{O}(3)$ invariant Haar measure.
Apply $P=\prod_{I=4}^{9} P_{I}$ to each open string propagator participating in a loop.

Gauging the $\mathrm{O}(3)$'s

Since $P^{2}=P$ we can put a projector on each time-slice of each string propagator. Introduce independent R 's for each point σ, t :

$$
\begin{aligned}
P_{I} & =\prod_{t} P_{I}=\int \prod_{t} d R(t) e^{i \theta_{a}(t) J_{I}^{a}} \\
& =\int \prod_{t} \prod_{\sigma} d R(\sigma, t) e^{i \int d \sigma \theta_{a}(\sigma, t) \mathcal{J}_{I}^{a}} \delta\left(R^{\prime}(\sigma, t)\right)
\end{aligned}
$$

Delete the $\delta\left(R^{\prime}(\sigma, t)\right)$ factor whenever σ sits on a horizontal line.
We have gauged each $\mathrm{O}(3)$ symmetry on the worldsheet, replacing the factor $e^{-\int F^{2} / 4}$ with $\prod_{\sigma, t} \delta(F(\sigma, \tau))$.

Worldsheet local prescription for inserting projectors.

Summary

- Open String $\left(\alpha^{\prime}>0\right)$ determines/regulates gauge theory
- Open/Closed Duality $\underset{\alpha^{\prime} \rightarrow 0}{\Longrightarrow}$ Field/String Duality
- Open String for 4D Yang-Mills:

10D NS+ with nonabelian D3-brane b.c.'s on 6 dimensions

- Lightcone path integrals: a non-perturbative formulation for \sum (Planar Diagrams)

Happy Birthday, Stanley!

