Star Formation Taste Tests

Alyssa A. Goodman
Harvard-Smithsonian Center for Astrophysics \&
Initiative for Innovative Computing at Harvard
(cra

What theorists are used to...

"Three-dimensional visualization of density structure in a turbulent cloud" Courtesy Eve Ostriker, Jim Stone \& Charles Gammie
...but, alas, observers cannot live in that space.

Emission Survey of Star-Forming Regions

Alyssa A. Goodman (CfA/IIC)
João Alves (Calar Alto, Spain)
Héctor Arce (AMNH to Yale)

Michelle Borkin (IIC)
Paola Caselli (Leeds, UK)
James DiFrancesco (HIA, Canada)
Jonathan Foster (CfA, PhD Student)
Sebastian Guillot (U. Victoria, Canada)

Mark Heyer (UMASS/FCRAO)
Doug Johnstone (HIA, Canada) Jens Kauffmann (CfA/IIC)
Helen Kirk (HIA, Canada)
Di Li (JPL)

Jason Li (Harvard College)
Jaime Pineda (CfA, PhD Student)
Erik Rosolowsky (CfA)
Scott Schnee (Caltech)
Mario Tafalla (OAN, Spain)

C®MPLETE Perseus

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al. in prep.)

\%
 Optical image (Barnard I927)

C®MPLETE Perseus

sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al. in prep.)
2.: Optical image (Barnard I927)

C®MPLETE Perseus

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al. in prep.)

\%
 Optical image (Barnard I927)

position-postion-velocity is NOT the same as position-position-position-velocity-velocity-velocity cf. Ostriker, Stone \& Gammie 2001
mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)

${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)

mid-IR IRAC composite from c2d data (Foster,
Laakso, Ridge, et al. in prep.)

position-postion-velocity is NOT the same as

 position-position-position-velocity-velocity-velocitycf. Ostriker, Stone \& Gammie 2001
mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)

${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)

mid-IR IRAC composite from c2d data (Foster,
Laakso, Ridge, et al. in prep.)
Optical image (Barnard I927)
position-postion-velocity is NOT the same as position-position-position-velocity-velocity-velocity cf. Ostriker, Stone \& Gammie 2001
mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)

${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)

mid-IR IRAC composite from c2d data (Foster,
Laakso, Ridge, et al. in prep.)
position-postion-velocity is NOT the same as position-position-position-velocity-velocity-velocity cf. Ostriker, Stone \& Gammie 2001

position-postion-velocity is NOT the same as position-position-position-velocity-velocity-velocity cf. Ostriker, Stone \& Gammie 2001

Rendering shows COMPLETE ${ }^{13} \mathrm{CO}$ (as given in Ridge et al. 2006) starting frame is plane-of-sky "z" axis is line-of-sight velocity

3D rendering courtesy AstroMed team @ IIC \& Nick Holliman, Durham, UK

Taste Tests

"Taste Tests"? We frame this project by analogy. How does a great chef, making a complicated dish, know if she has created what she originally intended when she is done cooking? She "tastes." She informs her cooking with her extensive knowledge of food chemistry (analytic theory), uses all the cooking equipment (simulations) she has in the kitchen to try to make something edible and tasty (starforming, and realistic), and then she uses her senses (observations) to see if what she made tastes as intended. "Tasting" in cooking actually encompasses the joint action of many senses: we propose here a combination of statistical techniques that we call "taste tests." The tests will allow us to discerningly decide if what we sense (observe) and what we can cook (simulate) might actually be tasty (form stars), and how (analytic theory) that happens.

Earlier Tests...

Inspired by the "Theory Cube"

- Power Spectra [of density, velocity]
- pdfs
- Autocorrelation Functions
- Δ-Variance
- Structure Functions

Data-Oriented

- Wavelet Analysis
- Spectral Correlation Function
- Structure Trees
- Velocity Centroid Analysis VCA [see also VCS)
- Principal Component Analysis

Today:Take-Out Only

Today:Take-Out Only

Column density is log-normal-ish on IO's of pc scales
^ turbulence prevails, mostly(?)

* Can we relate distribution details to Mach \# \& B?

Today:Take-Out Only

Column density is log-normal-ish on IO's of pc scales
^ turbulence prevails, mostly(?)

* Can we relate distribution details to Mach \# \& B?

Self-gravity matters on a range of scales, at identifiable locations

* quantification of hierarchical structure (dendrograms)

Full Workshop:

Five-Course In-House Meal

Full Workshop: Five-Course In-House Meal

1. Column density is log-normal-ish on IO's of pc scales

Full Workshop: Five-Course In-House Meal

I. Column density is log-normal-ish on IO's of pc scales
2. Self-gravity matters on a range of scales, at identifiable locations

Full Workshop: Five-Course In-House Meal

I. Column density is log-normal-ish on IO's of pc scales
2. Self-gravity matters on a range of scales, at identifiable locations
3. Scattered light ("Cloudshine") is potentially a GREAT way to improve resolution of dust maps, and potentially a big headache for JWST

Full Workshop: Five-Course In-House Meal

I. Column density is log-normal-ish on IO's of pc scales
2. Self-gravity matters on a range of scales, at identifiable locations
3. Scattered light ("Cloudshine") is potentially a GREAT way to improve resolution of dust maps, and potentially a big headache for JWST
4. Plane-of-the-Sky Temperature Maps, even carefully made, are deceiving due to l.o.s temperature variations

Full Workshop: Five-Course In-House Meal

I. Column density is log-normal-ish on I0's of pc scales
2. Self-gravity matters on a range of scales, at identifiable locations
3. Scattered light ("Cloudshine") is potentially a GREAT way to improve resolution of dust maps, and potentially a big headache for JWST
4. Plane-of-the-Sky Temperature Maps, even carefully made, are deceiving due to l.o.s temperature variations
5. Stellar Distribution may be useful in figuring out which stars form when \& where, but observational biases are CENTRAL

Full Workshop:
 Five-Course In-House Meal

I. Column density is log-normal-ish on I0's of pc scales
2. Self-gravity matters on a range of scales, at identifiable locations
3. Scattered light ("Cloudshine") is potentially a GREAT way to improve resolution of dust maps, and potentially a big headache for JWST
4. Plane-of-the-Sky Temperature Maps, even carefully made, are deceiving due to l.o.s temperature variations
5. Stellar Distribution may be useful in figuring out which stars form when \& where, but observational biases are CENTRAL

My goal is to make you hungry.

My goal is to make you hungry.

My goal is to make you hungry.

My goal is to make you hungry.

today

Writeboard Notes on KITP Simulation Talks
Wednesday, 8 Aucust
Writeboand archived Announcment for NSF Res

Krumholz, Klein, McKee: Collapse of Massive Cores

Radiation-Hydrodynamic Simulations of the Collapse and Fragmentation of Massive Protostellar Cores fragmentation phase for massive cores with observed properties. The simulations include radiation (and compare to a control simulation without it) to study how radiation feedback affects fragmentation. The primary

In a subsequent paper, we post-processed this simulation with a radiative transfer code to produce detailed predictions for the molecular line emission of massive protostellar disks. The goal is to predict what ALMA and the EVLA should see, and suggest how to use such observations to distinguish

Year of Simulation

- 2006,2007

Purpose(s) of Simulation
The goal is to do a realistic simulation of the collapse and initial scientific question was how strongly massive cores fragment. between models.

Submitter

Mark Krumholz
Authors

- Mark R. Krumholz
- Richard I. Klein

Edit this page Export Flag this version

Message Computational Astrophysics Data KITP Workshop

MONDAY, 25 JUNE
 Ohttps://123.writeboard.com/408dcd03c68e9c75d
(RSS - Q~ Google
Go back to Star Formation Taste Tests (Share this Writeboard using httoss://lic.grouphub,com/WB00475)
Dashboard I choose a prolect

Overview	Messages	To-Do	Milestones	

Project overview \& activity
Welcome to the Tasting Room

This is the collaborative space for those V who observe them. It was inspired, in the Formation Taste Tests," by A. Goodman \& about and short descriptions of simulato articles \& web sites). In the future, we are those simulations directly to online code friends at NCSA and SDSC). So, stay tune

Versions
You're viewing the latest version
3. 09 May 07 Mark Krumholz

10 Nov 06 Mark Krumholz

- 10 Nov 06 Mark Krumholz

Check two and Compare
Or quick compare the current and previous versions

My goal is to make you hungry.

Living in "Observational Space"

Ideally includes...

- Projection to 2D sky plane, or "3D" of spectral-line data cubes
- Radiative Transfer
- Chemical Model
- Adding appropriate noise
- Imposing observing
characteristics of a telescope

$S_{0}(1 p c)$
Example:
The Spectral Correlation Function
(Padoan, Goodman \& Juvela 2003)

Living in "Observational Space"

Ideally includes...

- Projection to 2D sky plane, or "3D" of spectral-line data cubes
- Radiative Transfer
- Chemical Model
- Adding appropriate noise
- Imposing observing
characteristics of a telescope

Example:
The Spectral Correlation Function
(Padoan, Goodman \& Juvela 2003)

"1. Column density is log-normal(ish) on IO's of pc scales"

Results from MHD simulations

Strong B-Field

Medium B-Field

Weak B-Field

Example: log-normal column density distribution
(Ostriker, Stone \& Gammie 2001)

Is the gas density distribution lognormal or not? (2D)

The (secret) uncertainties inherent in
column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

The (secret) uncertainties inherent in
column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

The (secret) uncertainties inherent in
 column density mapping.

"Bias \& Uncertainty": A Never-ending Challenge

State of the Art, 2004

After 2 Years of Refinement...!

Goodman, Schnee, Pineda, 2007, in prep; see also Pineda, Caselli \& Goodman 2007, in press.

"Bias \& Uncertainty": A Never-ending Challenge

State of the Art, 2004

Goodman, Schnee, Pineda, 2007, in prep; see also Pineda, Caselli \& Goodman 2007, in press.

"Bias \& Uncertainty": A Never-ending Challenge

Goodman, Schnee, Pineda, Ridge 2006, in prep; see also Pineda, Caselli et al. 2006, in prep.

Some results.

Extinction \& thermal emission are log-normal-ish (\& more so when points undetected in ${ }^{13} \mathrm{CO}$ are included.)
${ }^{13} \mathrm{CO}$ is not a very faithful tracer of column density

But, we're not done...

\log (Equivalent $\left.A_{V}[m a g]\right)$

"Bias \& Uncertainty": A Never-ending Challenge

"Bias \& Uncertainty": A Never-ending Challenge

Can we say what these distributions mean, quantitatively?

Notes: 1:1 line is predicted for turbulence \& log-normal distribtion, and "weak" and "strong" markers are based on (some, but not all!) simulations in Ostriker, Stone \& Gammie 2001--an illustrative example.
(cf. Vazquez-Semadeni et al.; Padoan et al.)
2. Self-gravity matters on a range of scales, at identifiable locations (Dendrograms)

What's at issue?

(Dendro)Surfaces

"CLUMPFIND"

What's at issue?

(Dendro)Surfaces

work of Rosolowsky, Foster, Pineda, Kauffmann, Borkin, Padoan, Halle \& Goodman; figures based on Foster \& Goodman 2006; Goodman et al. 2007

Meaningful structure in position-position-velocity space (3D)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Position

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Position

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Position

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

CLUMPFIND
(Williams et al. 1994)

Position

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

Position

Dendrogram
(Rosolowsky et al. 2007;
Goodman et al. 2007
cf. Houlahan \& Scalo 1992)

CLUMPFIND
(Williams et al. 1994)

2D View of L1448: Cloudshine + Integrated ${ }^{13} \mathrm{CO}$

Foster \& Goodman 2006; Goodman et al. 2007

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

(Yellow = self-gravitating components)

Dendrograms (Hierarchical) vs. CLUMPFIND (Non-hierarchical)

i
The online PDFs of these insets

Taste-Test

(Dendro)Surfaces

"CLUMPFIND"

Is CLUMPFIND OK as a Statistic? (Like Cayenne Pepper?)

CLUMPFIND output for LI448
(I.2K step \& threshold; lower values give too many clumps to show!)

Results for full Perseus Map

Threshold	Step size	total number of Clump	\% above sensitivity limit Mass v/s Radius	\% above sensitivity limit FWHM v/s Radius	\% above both curves
0.3	0.3	5199	47.32%	58.03%	46.59%
0.3	0.5	3844	40.74%	46.96%	40.30%
0.5	0.3	2141	79.12%	89.72%	78.14%
0.5	0.5	1420	86.83%	89.01%	86.20%
0.7	0.3	1748	79.06%	90.79%	78.60%
0.7	0.5	1168	87.07%	90.58%	86.73%

Pineda, Goodman \& Rosolowsky 2007

Is CLUMPFIND OK as a Statistic? Be VERY careful of the recipe.

Pineda, Goodman \& Rosolowsky 2007

Advice for Cooks \& Tasters

The menu may offer something for everyone, but taste carefully to be sure you got what you ordered.

Also, be careful to mind the difference between "numerical experiments" and "simulations": don't taste them in life-threatening ways.

E Extinction and scattering! (Cloudshine)

Fig. 1.-L1448 in false color Component images have been weighted according to their flux in units of MJy sris. J is blue, H is green, and K_{s} is red. Outflows from young stars glow red, while a small fan-shaped reflection nebula in the upper right is blue-green. Cloudshine, in contrast, is shown here as a muted glow with green edges. Dark features around extended bright objects (such as the reflection nebula) are the result of self-sky subtraction.

Fig. 2.-L1451 in false color. Again, each component image has been scaled to the same flux scale in units of MJy sr ${ }^{-1}$; and J is blue, H is green, and K_{s} is red. A smaller map of 1.2 mm dust emission contours from COMPLETE (M. Tafalla 2006, in preparation) has been overlaid, showing that the color of cloudshine is a tracer of density. Redder regions have high dust continuum flux, and the edges of cloudshine match the edges of the dust emission. Dark edges around bright features (particularly noticeable along the northern edges) are the result of self-sky subtraction.

"Cloudshine"=Scattered Ambient Starlight

Fig. 1.-L1448 in false color. Component images have been weighted according to their flux in units of MJy sris. J is blue, H is green, and K_{s} is red. Outflows from young stars glow red, while a small fan-shaped reflection nebula in the upper right is blue-green. Cloudshine, in contrast, is shown here as a muted glow with green edges. Dark features around extended bright objects (such as the reflection nebula) are the result of self-sky subtraction.

FIG. 2.-L1451 in false color. Again, each component image has been scaled to the same flux scale in units of MJy sr ${ }^{-1}$; and J is blue, H is green, and K_{s} is red. A smaller map of 1.2 mm dust emission contours from COMPLETE (M. Tafalla 2006, in preparation) has been overlaid, showing that the color of cloudshine is a tracer of density. Redder regions have high dust continuum flux, and the edges of cloudshine match the edges of the dust emission. Dark edges around bright features (particularly noticeable along the northern edges) are the result of self-sky subtraction.

Extra Slides Only Beyond Here

Extinction and scattering! (Cloudshine)

Fig. 3.-Model of cloudshine in one core as reflected interstellar radiation. The lower left panel shows the roughly circular feature we chose to model as a sphere. Due to the surrounding structure, only the left half of the circle was used to derive an angle-averaged radial profile. The comparison between this radial profile and our best-fit model (an r^{-2} density profile and a total optical depth of 120 mag of visual extinction) is shown in two ways: above as radial flux profiles in individual bands and in the lower right as a synthetic color-composite image that allows for an overall comparison. Although the fit is good, the central region of the core is darker than predicted by the model. Some of this may be due to self-sky subtraction in the image (which causes dark edges around bright features) and a nonspherical, nonisotropically illuminated core, and some may be due to a failure to adequately model the density structure at the center of the core.

Almost Tasting a Very Simple Recipe

Fig. 3.-Model of cloudshine in one core as reflected interstellar radiation. The lower left panel shows the roughly circular feature we chose to model as a sphere. Due to the surrounding structure, only the left half of the circle was used to derive an angle-averaged radial profile. The comparison between this radial profile and our best-fit model (an r^{-2} density profile and a total optical depth of 120 mag of visual extinction) is shown in two ways: above as radial flux profiles in individual bands and in the lower right as a synthetic color-composite image that allows for an overall comparison. Although the fit is good, the central region of the core is darker than predicted by the model. Some of this may be due to self-sky subtraction in the image (which causes dark edges around bright features) and a nonspherical, nonisotropically illuminated core, and some may be due to a failure to adequately model the density structure at the center of the core.

Simulation

Tastes "right", with 20% scatter, at $1<A_{V}<10$, for NIR.

Theorists doing the Tasting!

Simulation

Tastes "right", with 20% scatter, at $1<A_{V}<10$, for NIR.

Theorists doing the Tasting!

Simulation

Tastes "right", with 20% scatter, at $1<A_{V}<10$, for NIR.

Modeling line-of-sight temperature fluctuations

Errors introduced by the assumption of isothermal dust along each line of sight

Variable fraction of emission from transiently heated very small dust grains

Variable dust properties (e.g. emissivity or emissivity spectral index)

Modeling line-of-sight temperature fluctuations

Errors introduced by the assumption of isothermal dust along each line of sight

Variable fraction of emission from transiently heated very small dust grains

Variable dust properties (e.g. emissivity or emissivity spectral index)

Modeling line-of-sight temperature fluctuations

MHD Simulation+Radiative Xfer Code (No NOISE]

MHD Simulation+Radiative Xfer Code [No NOISE]

Modeling line-of-sight temperature fluctuations

Tasting the Simulations

Tasting the Simulations

Tasting the Simulations

Which "stars" "form" from what gas, when?

J,H,K Near- $-\mathbb{R}$ image of Cloudshine
$+* *$
850 micron and 1.1 mm
clumps on a c2d IRAC 3 -color image
$\mathrm{N}, \mathrm{H}^{+}$on ${ }^{13} \mathrm{CO}$ integrated intensity

Deep NIR Extinction on 2MASS Extinction
■

T [1.2 mm (IRAM) on 850 micron (SCUBA)
continutm

What stars form from what gas, when?

Theorists using
Observers Ingredients
e.g. Schmeja \& Klessen 2006
S. Schmeja and R. S. Klessen: Evolving structures of star-forming clusters

SFE: 20\%

SFE: 30\%
い!

SFE: 40\%

Are you hungry yet?

Let's not let food go to waste, even if it is full of artificial ingredients...

The HDF Group

The Astrophysics Simulation Collaboratory:
A Science Portal Enabling Community Software Development
Michael Russell ${ }^{\dagger}$ Gabrielle Allen* Greg Daues ${ }^{\text { }}$ Ian Foster ${ }^{\text { }}$ Tom Goodale ${ }^{*}$
Edward Seidel ${ }^{*} \quad$ Jason Novotny ${ }^{\ddagger} \quad$ John Shalf ${ }^{\ddagger!}$ Wai-Mo Suen ${ }^{\|}$
Gregor von Laszewski
April 4, 2001 http://ascl.net/
Abstract

We describe the design and implementation of the Astrophysics Simulation Collaboratory Web Portal.

US National Virtual Observatory

Data formats, software, middleware, and infrastructure matter.

Let's not let food go to waste, even if it is full of artificial ingredients...

Who can make this?

