Galactic-Scale Dynamics and Turbulence

collaborators:

Chang-Goo Kim (Seoul)

Woong-Tae Kim (Seoul)

Rob Piontek (Potsdam)

Rahul Shetty (Maryland)

Eve Ostriker *University of Maryland*

Outline

- * Global-scale aspects of SF
 - Where/when does SF occur?
- * Turbulence
 - Why should it be important for SF?
- What contributes to driving turbulence?
- * Global models of SF with feedback
- Some open issues

Global Dynamics...

- Galaxies have prominent substructure:
 - Spiral arms + branches
 - Arm spurs/feathers
- * Spiral arms:
 - Spacing scale determined by stellar component
 - Modal and/or tidally forced
 - Gaseous gravity contributes locally
 - Molecular gas is concentrated in arms
 - Star formation is concentrated in arms

CO Intensity (Jy km s-1) Whirlpool Galaxy • M51 NASA and The Hubble Heritage Team (STScl/AURA)

Spiral-arm spurs & SF

- Spurs/feathers are evident in stellar emission, extinction, and dust IR (Elmegreen 1980, LaVigne et al 2006)
- Gas spurs form due to selfgravitating instability in arm (Kim & Ostriker 2002)
- Spur fragmentation yields "interarm" GMC and star formation if arm shock is moderate
- Strong shock/high arm surface density produces GMAs/GMCs in arm (Elmegreen 1994; Kim & Ostriker 2006; Shetty & Ostriker 2006)

- Global galactic structure is essential to SF!
- SF "now": spiral structure in stars-spiral structure in gas spurs + GMCs

$$\Sigma_{SFR} = \frac{\varepsilon_{GMC} \Sigma_{gas}}{t_{lifecycle}} \approx \varepsilon_{GMC} \Sigma_{gas} \frac{m(\Omega - \Omega_p)}{2\pi}$$

$$\Leftrightarrow SF \text{ "then"}?$$

- - Stronger spiral structure...
 - ...but more gas overall ⇒ unstable in interarm regions
 - What sets $t_{lifecycle} = t_{diffuse} + t_{GMC}$ for gas "then"?

Effects of turbulence on star formation

- * Turbulent *small-scale* velocities and magnetic fields *discourage* SF, by contributing to effective pressure:
- In large-scale ISM for disk galaxies:
 - SF rate may depend on turbulent δv and $\delta v_A = \delta B/(4\pi\rho)^{1/2}$ through c_{eff} in Jeans time $t_J = c_{eff}/G\Sigma_g$
 - Masses of clouds that form may depend on turbulence through Jeans mass $M_J = c_{\rm eff}^{4/(G^2\Sigma_g)}$
 - Whether active SF can occur at all may depend on turbulence through effective Toomre parameter $Q = \kappa c_{eff}/(\pi G \Sigma_g)$
- * But also...
- * Turbulent *large-scale* velocities *encourage* SF by concentrating gas locally, from shocks
- Turbulent large-scale magnetic fields encourage SF by transferring angular momentum out of condensations

What is c_{eff} in Q?

❖ If self-gravity regulates SF, then threshold surface density is sensitive to c_{eff}

$$\Sigma_{crit} = 6 M_{\odot} pc^{-2} \left(\frac{c_{eff}}{6 \text{km s}^{-1}} \right) \left(\frac{V_c}{200 \text{km s}^{-1}} \right) \left(\frac{R}{15 \text{kpc}} \right)^{-1} \left(\frac{Q_{crit}}{1.4} \right)^{-1}$$

- ❖ If c_{eff} includes only thermal sound speed c_s, then cold portion of disk with c_s ~1 kms⁻¹ would essentially always be unstable
- * Observations suggest that cold gas can be stable even if $\Sigma > \Sigma_{crit}(c_{eff}=1 \text{ kms}^{-1}) \Rightarrow c_{eff}$ includes non-thermal parts from δv and δ

V_A 8/20/07

Driving of ISM turbulence

- Traditional view: driving by supernovae
- * Problems with driving only by SN (+ HII regions)
 - Intermittency of SF
 - No observed correlation of turbulence with SF (arm/interarm; inner/outer disk)
 - Outer disks lack SF but appear to contain cold gas that would be unstable without turbulence
- Contributing non-stellar sources:
 - Magnetorotational instability (sheared rotation +B)
 - Sub-threshold swing amplification (sheared rotation + G)
 - Non-steady spiral shocks
 - Other (thermal instability, Parker instability, CRs...)

and

Supernovae of Large-Scale Instabilities?

9:40am Miguel de Avillez (Univ. Wein)

10:10am Eve Ostriker (Univ. Maryland)

10:40am MORNING BREAK

Large Scale Supernova-Driven Turbulence

Galactic Scale Dynamics and Turbulence

8/20/07

9

Magnetorotational Instability

- * Magnetorotational instability (MRI) is a generalization of Balbus-Hawley (1991) instability
- \bullet MRI requires angular velocity Ω to decrease outward
- ❖ Magnetic fields connect inward-displaced and outward-displaced fluid elements and transfer angular momentum from small *R* to large *R*
- Quasi-steady state turbulence develops for 3D models
- Sellwood & Balbus (1999) suggested MRI may be important in galaxies
- * Differences in galaxies from MRI in accretion disks
 - ISM gas is cloudy/multi-phase
 - ISM gas has thermal pressure P set by heating & cooling P
 - mean density is set by $Pold = \frac{1}{kT_{warm}} \left(\frac{1}{M_{warm}} \right)$ oading":

MRI in ISM gas

* $g=0 \Rightarrow$ no vertical stratification

8/20/07

Two-phase turbulent ISM model

Piontek & Ostriker (2005)

Saturation scalings of MRI in ISM

- * $(\delta v^2)^{1/2} = 3 \text{ km s}^{-1} \times (n)^{-0.77}$
- * At low (n), cold cloudlets are trans-sonic with respect to warm medium (up to 8 km s⁻¹)
- ♦ (B²) ~ independent of (n)
- * In saturated state, $\beta = P_{th}/P_{B} \sim 0.5$

8/20/07

Piontek & Ostriker (2005)

Cloudy gas + MRI+g_z

Cold gas
 preferentially settles
 in midplane

Solar neighborhood model:

- * 128x128x384 box
- $t_{\text{max}} = 10 \text{ orbits}$ $= 2.5 \times 10^9 \text{ yrs}$
- $n_{init}(z=0) = 1 \text{ cm}^{-3}$
- $\Sigma_{\text{tot}} = 10 \text{ M}_{\odot} \text{ pc}^{-2}$

R-z slices at t=8 orbits

Outer disk model

- Low surface density $\Sigma_{\text{tot}} = 6 \text{ M}_{\odot} \text{ pc}^{-2}$
- Low gravity $\rho_{eff} = 0.003 M_{\odot} pc^{-3}$
- * Results:

Compared to inner-disk,

- Lower fraction of cold gas (20%)
- Larger δv~ 5 km/s
- Larger cold gas scale height \Rightarrow (V_A) > 8 km/s

Swing amplifier: turbulence driven by self-gravity and shear

- Growth occurs due to cooperation of epicyclic motion, shear, self-gravity
- Need low $Q = \kappa c_{\text{eff}} / \pi G \Sigma$ for significant growth
- Low enough Q ⇒ disk fragments into massive clumps with M~ M_J → see W.-T. Kim poster

Schematic of shearing wavelet, after Toomre (1981)

8/20/07

Time increasing

Because epicyclic motion is in the same direction as shear, matter lingers in overdense regions and wavelet is amplified by self-gravity

"Swing" in disk with Q > Q_{crit}

- * If $Q > Q_{crit}$, fragmentation does not occur but nonlinear density and velocity fluctuations can be driven
- Velocity dispersion is very sensitive to Q; $\delta v \approx 4 \text{ km s}^{-1}$ when $Q \approx Q_{crit}$

Effect of stellar potential on turbulence

- Sufficient particle number is required so that Poisson noise effects do not contaminate results
- Turbulence increases by at least a factor two when stellar contribution is included

Turbulence driving by spiral shock

- Spiral shock front cannot be steady in radial-vertical plane
- Shock flaps horizontally relative to potential minimum
- Curved shock drives vertical motions
- Large-scale vertical and horizontal motions cascade into turbulence

Turbulence downstream from shock

8/20/07

20

Turbulent amplitudes from spiral shock

- Quasi-steady state develops
- Horizontal velocities exceed vertical velocities: $\delta v_R \sim \delta v_{\phi}$ $\sim 2 \delta v_{z}$
- Velocity dispersion is 2× lower in interarm region than arm region
- Velocity dispersion increases with strength of shock
- $\delta v_{tot} > c_s$ when $\mathcal{M}_{eff} > 4$

8/20/07

Kim, Kim, & Ostriker (2006)

Turbulence is present...what does it do?

- Stellar sources do not appear sufficient to power all turbulence in the ISM
- * Important non-stellar sources of kinetic and magnetic turbulence include MRI, "swing", spiral shocks
- Non-stellar sources combine with each other and stellar sources
- * Next step: need direct investigation to test exactly how [whether? when?] turbulence counteracts gravity
 - Can we define a c_{eff} based on δv , δv_A and $\langle c_s \rangle$ such that SF is regulated by Q, t_J , L_J ?

Global model with "SN" feedback

- Isothermal EOS, $V_c/c_s=30$
- External spiral potential
- "thick disk" gravity; H/R = 0.01
- Feedback threshold at $\Sigma = 320 \text{ M}_{\odot} \text{ pc}^{-2}$
- Probability of cloud destruction in time δt
 - $=\delta t/t_{GMC}$
 - $= \delta t R_{\rm SN} M_{\rm cloud}/N_{\rm SN}$
 - $= \delta t R_{SN} M_{SN} / \epsilon_{SF}$
- "SN" event momentum input:

$$p_{SN} = \varepsilon_{SF} \frac{M_{cloud}}{M_{SN}} M_{shell} v_{shell}$$

Expanding shell is created

Shetty & Ostriker (2007)

8/20/07

See R. Shetty poster Q=1 "strong feedback" model

"Kennicutt-Schmidt" behavior

- SFR increases with surface density
- Large scatter!
- * Similar Σ_{SFR} to observations at low Σ
- Steeper slope than in observations, other simulations
- disk thickness effect...?

Disk thickness effects in t_{grav}

Thick disk has fastest-growing Jeans mode growth rate

$$\gamma^2 = \frac{2\pi G\Sigma}{H} \left(\frac{x}{1+x} - \frac{x^2}{2h} \right)$$
 where $x(1+x)^2 = \frac{H\pi G\Sigma}{c_s^2} \equiv h$

- In terms of h and Q, $\frac{H}{R} = \frac{h}{\sqrt{2}} \frac{c_s}{V_c} Q$
- ♦ Self-gravitating disk has $h=1 \Rightarrow x=0.47 \Rightarrow t_{grav}=1/\gamma \approx c_s/2G\Sigma = t_{J,2D}/2$
- * If vertical direction has fixed numerical thickness large compared to natural thickness (e.g. numerically unresolved), $h = H_{numer} \frac{\pi G \Sigma}{c_s^2} >> 1$

then
$$x \approx h^{1/3} \Rightarrow t_{grav} = 1/\gamma \approx \sqrt{\frac{H_{numer}}{2\pi G \Sigma}}$$
 independent of c_s

* Notice difference in scalings: $\Sigma/t_{grav} \propto G\Sigma^2/c_s$ versus $\Sigma/t_{grav} \propto \Sigma^{1.5} (G/H_{numer})^{1/2}$ 8/20/07

Velocity dispersion in feedback models

- Large-scale velocity dispersion increases with strength of feedback
- * Velocity dispersion is relatively independent of Σ (and R) in each model
- Increase in large-scale velocity dispersion does not suppress SF
- ❖ Simple replacement of $c_s \rightarrow c_{eff} = (c_s^2 + \sigma^2)^{1/2}$ is too naive; i.e. $t_{grav} \neq \sigma/G\Sigma$
- Scale of turbulence is important!

8/20/07

2

Open issues

- Disk scale heights in ISM
 - Observations (cold phase?); simulations (resolution)
- * Multi-scale turbulence:
 - Composite spectrum, including all sources?
 - Variations with location/environment?
 - Variations with thermal ISM phase? Effects on H?
- Positive and negative effects of turbulence on SF
 - Direct demonstration of negative effect!
 - Is there a clean separation by scale?
- Can SF be self-regulated?
 - Can negative effects (small-scale) exceed positive effects (large-scale) of turbulence driven by SF?
 - Or is gas depleted until SFR drops?