The Impact of Feedback on the ISM

Clare Dobbs University of Exeter

Friday, 18 April 14

- Properties and structure of the ISM
- components of cold, warm, hot ISM
- scale height of the ISM
- distribution and linewidths of HI, CO
- Properties of molecular clouds
- clouds highly structured
- low star formation efficiency
- mass spectra
- retrograde and prograde cloud rotations

Friday, 18 April 14

Friday, 18 April 14

- Do we need feedback to match these properties? -Yes
- Mostly to counteract gravity

- Properties of molecular clouds and ISM in global simulations
- Cloud formation and dispersal
- Zoom in simulations
- Synthetic CO and HI maps compared with Outer Galaxy

Isolated galaxy simulations

 Logarithmic potential for the stars and dark matter with / without spiral component (m=0,2,4)

- Self gravity of the gas
- Cooling and heating of the ISM (Glover & MacLow 2007)
- H₂ and CO formation
- 1,4,8 million particles

Simple stellar feedback prescription

$\Sigma = 8, 16 M_{\odot} pc^{-2}$

Isolated galaxy simulations

• Stellar feedback: above densities of 100, 500, 10⁴ cm⁻³, converging flow

 Add kinetic and thermal energy equal to $\epsilon M(H_2) \times 10^{51} ergs$ ε=1%, 5%, 10%, 20%, 40% 160 M⊙

Energy distributed in form of Sedov solution

• Add energy instantaneously, continuously over time, with a delay

Galaxy simulations

Properties of the disc: Structure

Feedback insufficient to disrupt clouds: no equilibrium state Clear spiral arms and spurs

Feedback dominates structure

ISM Velocity dispersion

Velocity dispersion in500 pc annulus of disc

Below: Typical velocity dispersion in the disc vs feedback (star formation) efficiency

(%)	σ (km/s)
	2-4
5	4-8
20	8-20

Scale height

Friday, 18 April 14

Scale heights qualitatively agree with observations

In simulations, both σ and scale height scale with feedback

Temperature Distribution

• Hard to generate large amounts of cold gas coupled with high velocity dispersions and scale heights

Properties of clouds

Properties of clouds

Properties of clouds

Friday, 18 April 14

Star Formation Efficiency of Clouds

Individual cloud Mass of cloud ~ $2 \times 10^6 M_{\odot}$ Efficiency = 2.5%

their lifetime 12

- Total mass of stars formed~ $5 \times 10^4 M_{\odot}$
- <u>Generally</u> ~1% of mass of GMCs turned into stars during
- similar findings by Hopkins et al.
- most star formation occurs during time cloud is in the spiral arm (and is most massive)

Total Star Formation Rate

Different efficiencies

Results with / without spiral potential

Total Star Formation Rate

Different efficiencies

Results with / without spiral potential

No strong dependency on ε (i.e. self regulating) or spiral structure

Friday, 18 April 14

How does gas flow when clouds form / disperse?

- How does an individual cloud evolve?
- How important are cloud-cloud collisions?
- How do clouds disperse feedback, shear?
- Are there signatures in the gas dynamics of what is driving the dynamics?

ions? hear? ics of

evolution of arm 60 ່ນ SDI. b 2 rotating etailed

-0.5 x (kpc)

0.5

x (kpc)

-1.4 -1.2 x (kpc)

Cloud-cloud collisions

Consider all $>10^4 M_{\odot}$ clouds

Determine which clouds contain particles originating from at least 2 clouds 1 Myr earlier

Frequency of cloud-cloud collisions ≤ 10 Myr in spiral galaxy agrees with theoretical using cloud number density prediction: in spiral arms $n_{sp} \sim 30 n_{av}$ $\pi r^2 n_{sp} v$

But note, may depend on definition (surface density) of cloud - see also Tasker & Tan 2009

Dobbs et al. 2014, in prep.

Cloud disruption: Feedback or shear?

Can calculate Σ where shear becomes important

 $r_{cloud} \underline{dF} = \sum_{crit} G (r_{cloud} = 50 pc)$ dr timescale~A⁻¹

shear acts over lifetime of cloud, and fairly large scales

feedback likely more important for smaller clouds, bound clouds, and bound clumps

shear also low at large R

Pringle જ **Dobbs**

 \mathbf{M}

flows acting on much faster timescales in feedback regime converging flows in spiral arms apparent in lower feedback case

Dobbs, Pringle & Burkert

What about higher resolution?

- Select region of gas in global simulation
- -Trace back gas by 50Myr
- Split particles

compare with Bonnell et al. 2013, van Loo et al. 2013

Re-simulations of section of spiral arm with mass per particle of 3.85 M⊙

Dobbs et al., in prep.

What about higher resolution?

log column density [g/cm²] -2 -3 -4 -5

Dobbs et al., in prep.

Different feedback at higher resolution

Overall structure

filaments and she better resolved d global simulation

Different feedback at higher resolution

Little difference with different feedback, including adding feedback over time, stochastic implementation

Overall structure

filaments and she better resolved d global simulation

ISM in the vertical direction

Feedback has a larger impact on vertical distribution, and amount of very hot gas

Otherwise ISM (and star formation) still largely reflect initial conditions

Cloud properties at higher resolution

cloud properties (+mass spectrum) very similar to global simulation (Dobbs & Pringle 2013)

Friday, 18 April 14

Comparisons with HI observations: Distribution of 'holes'

THINGS data: M51 Bagetakos et al. 2011

Simulated m=2 galaxy in HI (Dobbs & Pringle 2013) Compare holes in different simulations and observations, identified by different people, and with Bagetakos et al. 2011 Check with KS test

Distribution of 'holes'

- Some holes in simulations certainly due to feedback, smaller holes may not be
- KS test does not reveal difference in distribution of hole size in simulations and observations
- Also tested simulated galaxies at different inclinations, and resolutions
- KS test finds hole properties unreliable at i) high inclination (>60°) and ii) low resolution (\leq THINGS data)

Synthetic CO maps

H₂ added according to Bergin et al. 2004:

 $\partial n(H_2) = R_g n_{HI} n_{H2} T^{0.5} - (\overline{\zeta_c} + \overline{\zeta_{phot}}(n_{H2})) n_{H2}$ ∂t Dobbs et al. 2006

CO added according to Nelson & Langer 1997:

 $\partial n(CO) = k_0 n_{H2} n(C^+)\beta - \hat{\zeta}_{CO}(n_{...}) n(CO)$ ∂t Pettitt et al., 2014, submitted

Duarte-Cabral et al. 2014, in prep.

Apply radiative transfer code (TORUS, Harries 2003) to generate synthetic maps

Friday, 18 April 14

Synthetic CO maps

Synthetic CO maps (2nd quadrant)

Total amount of molecular gas~10-60% Little difference to results with different chemistry Greatest difference with / without feedback, to a lesser extent Σ

Friday, 18 April 14

Galactic longitude

median $X_{CO} = 1.9 \times 10$

very close to observ

but some scatter in models $X_{CO}=1-3$ cm⁻²K km s⁻¹, more than observations al. 2011)

(see also Smith et al. 2014, Shetty et

Conclusions

- From global simulations, 3 outcomes:
- no / too little feedback: population of strongly bound, infinitely long-lived spherical clouds
- moderate feedback: clouds and ISM exhibit characteristics comparable to those observed
- too much feedback: spiral structure disrupted
- Feedback and shear important for cloud dispersal
- Zoom in simulations seem to confirm results of global simulations
- Starting to characterise ISM with CO and HI maps