The Impact of Feedback on the ISM

Clare Dobbs
University of Exeter

o DFAC,




The ISM and molecular clouds on galaxy
scales

* Properties and structure of the ISM
- components of cold, warm, hot ISM

- scale height of the ISM
- distribution and linewidths of HI, CO

* Properties of molecular clouds
- clouds highly structured
- low star formation efficiency

- Mass spectra
- retrograde and prograde cloud rotations
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The ISM and molecular clouds on galaxy
scales

* Do we need feedback to match these properties!?
- Yes

- Mostly to counteract gravity




Outline

* Properties of molecular clouds and ISM in
global simulations

* Cloud formation and dispersal

e /oom in simulations

* Synthetic CO and HI maps compared with
Outer Galaxy




Isolated galaxy simulations
* | ogarithmic potential for the stars and dark matter
with / without spiral component (m=0,2,4)
* Self gravity of the gas

* Cooling and heating of the ISM (Glover & MacLow
2007)

e H, and CO formation
*|,4,8 million particles 2=8, |6 Mopc

* Simple stellar feedback prescription




Isolated galaxy simulations

e Stellar feedback: above densities of 100, 500, 10% cm?3,
converging flow

* Add kinetic and thermal energy
equal to € M(H2)x10°'ergs €=1%, 5%, 10%, 20%, 40%

160 Mo

* Energy distributed in form of Sedov solution

* Add energy instantaneously, continuously over time, with
a delay




Galaxy simulations

8 million particles
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Properties of the disc: Structure
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Feedback insufficient Clear spiral Feedback
to disrupt clouds: no arms and dominates
equilibrium state spurs structure
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ISM Velocity dispersion

«Velocity dispersion in

T ‘ T

- Slightly higher in spiral arms I 500 pc annulus of disc

g | I Below: Typical velocity

‘ | | dispersion in the disc vs
feedback (star formation)
efficiency
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Scale height

T Noc s ——100<T<10° K
-+ NGC 3031
NGC 3521 7. ---T<150 K

- NGC 3627

NGC 4736 --=-T>5000 K

o Scale heights qualitatively

Necor| agree with observations

NGC 5194

In simulations, both 0 and
scale height scale with
feedback

=~ Bagetakos ef
al. 2011

Radius (kpc)
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Temperature Distribution

Cold (<150 K)
—— 150 < T < 5000 K -

— Warm (T> 5000 K)

o0 100 150 200 200 300
Time (Myr)

€=5 % (moderate feedback)

Warm (T> 5000 K)

T T T T ‘ T T T T ‘ T T T T
Cold (<150 K)

— 150 < T < 5000 K 7

50 100 150 200 250
Time (Myr)

€=20 % (high feedback)

* Hard to generate large amounts of cold gas coupled
with high velocity dispersions and scale heights
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Properties of clouds

Number of clouds

| % feedback gives

bimodal
distribution
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Properties of clouds

Number of clouds

| % feedback gives

bimodal
distribution

unbound clouds with feedback,
bound clouds otherwise
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Properties of clouds
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| % feedback gives
bimodal
distribution
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Star Formation Efficiency of Clouds

Individual cloud

Total mass of stars formed~5x10*Mq
Mass of cloud ~ 2x10°Mg
Efficiency = 2.5%

Cloud380

e Generally ~1% of mass of
GMCs turned into stars during
their lifetime

220 280 300 | 2

most star formation occurs
during time cloud is in the spiral
arm (and is most massive)

similar findings by Hopkins et al.
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Total Star Formation Rate

Different efficiencies Results with / without spiral potential
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Background: Kennicutt 2008
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Total Star Formation Rate

Different efficiencies Results with / without spiral potential
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No strong dependency on € (i.e. self regulating) or spiral structure
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How does gas flow when clouds form /
disperse!

* How does an individual cloud evolve?
* How important are cloud-cloud collisions!?

* How do clouds disperse - feedback, shear?

* Are there signatures in the gas dynamics of
what is driving the dynamics?




Detailed evolution of

Friday, 18 April 14

Ta])%

In a rig

GMC

rotating spiral arm

15%f#in clouds i [ 20°% infClouds . 35 M B 55% in clouds *

#100%.in clouds »250°Myr

10% in clo
.

-
g NS

Dobbs & Pringle 13




Cloud-cloud collisions

Consider all >10* M clouds

Determine which clouds contain particles originating
from at least 2 clouds | Myr earlier

Frequency of cloud-cloud collisions =10 Myr in spiral galaxy

agrees with theoretical
prediction: using cloud number density

in spiral arms nsp ~ 30 nay

|
T rZnsp V

But note, may depend on definition (surface density) of cloud

- see also Tasker & Tan 2009
Dobbs et al. 2014, in prep.
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Cloud disruption: Feedback or shear?

Can calculate 2. where shear ercitios 2t which shear
becomes important disrupts clouds

Icloud i — Zcrit € (rcloud=50PC)
dr
timescale~A""

shear acts over lifetime of
cloud, and fairly large scales
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feedback likely more
important for smaller
clouds, bound clouds, and

bound clumps shear also low at large R

Dobbs & Pringle 13




Overall gas dynamics

A1, \2 eigenvalues of rate of strain tensor

X=A|*+A;2 (divergence)  B=A|-\;

Dobbs, Pringle & Burkert 12

flows acting on much faster timescales in feedback
regime

converging flows in spiral arms apparent in lower
feedback case
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What about higher resolution!?

re-simulation

spiral arm
with mass per
particle of
3.85 Mo
3
- Select region of gas in global simulation 2‘
-Trace back gas by 50Myr =
: : o
- Split particles 3
compare with Bonnell et al. 2013, van Loo et al. 2013 2
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What about higher resolution!?

lumn density [g/em-]
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Dobbs et al., in prep.
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Different feedback at higher resolution

Overall structure similar

filaments and shells much
better resolved compared to
global simulations
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Different feedback at higher resolution

Overall structure similar

filaments and shells much
better resolved compared to
global simulations

Little difference with different
feedback, including adding

feedback over time, stochastic
implementation
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ISM in the vertical direction
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Feedback has a larger impact on vertical distribution, and amount
of very hot gas

Otherwise ISM (and star formation) still largely reflect initial
conditions
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Cloud properties at higher resolution

100.000 [

10.000 :
1.000 :

0.100

Lz (pc km s™)

0.010 & + Prograde

j o Retrograde
0.001T L.t o

10° 10°

virial parameters angular momenta - fraction of
retrograde clouds =46%

cloud properties (+mass spectrum) very similar to global simulation
(Dobbs & Pringle 201 3)
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Comparisons with HI observations:
Distribution of ‘holes’

Compare holes in
different simulations
and observations,
identified by different
people, and with
Bagetakos et al. 201 |
Check with KS test

THINGS data: M5 | Simulated m=2
Bagetakos et al. 201 | galaxy in HI (Dobbs
& Pringle 201 3)
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Distribution of ‘hole’ parameters
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* Observations and simulations find similar distributions of hole radii, age,

location, aspect ratio (most ~1). Some difference in expansion velocity
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Distribution of ‘holes’

* Some holes in simulations certainly due to feedback,
smaller holes may not be

e KS test does not reveal difference in distribution of hole
size in simulations and observations

* Also tested simulated galaxies at different inclinations, and
resolutions

* KS test finds hole properties unreliable at i) high inclination
(>60°) and ii) low resolution (sTHINGS data)




Synthetic CO maps

H> added according to Bergin et al. 2004:

dn(H2)= Rgnhi nH2 T - (Cc+Cphot(NH2))NH2
ot Dobbs et al. 2006

CO added according to Nelson & Langer
1997

In(CO)= ko nH2 n(CHP - Cco(n..) n(CO)
ot

Pettitt et al., 2014, submitted
Duarte-Cabral et al. 2014, in prep.

Apply radiative transfer code (TORUS, Harries 2003) to generate synthetic

maps



Synthetic CO maps

H> added according to Bergin et al. 2004:

dn(H2)= Regnhi nH2 T - (CctCphot(NH2))NH2
ot Dobbs et al. 2006

CO added according to Nelson & Langer
1997

In(CO)= ko nH2 n(CHP - Cco(n..) n(CO)
ot

Pettitt et al., 2014, submitted Comparison with observations
Duarte-Cabral et al. 2014, in prep. (FUSE)

Apply radiative transfer code (TORUS, Harries 2003) to generate synthetic

maps



Synthetic CO maps (2nd quadrant)
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Acreman et al. 2012, Duarte-

Cabral et al., in prep.

Galactic longitude Galactic longitude

Total amount of molecular gas~10-60%

Little difference to results with different chemistry

Greatest difference with / without feedback, to a lesser extent 2
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X factor

Distribution of H, column density
versus CO intensity

median Xco=1.9%x10%cm=2K km s!

£
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very close to observations

but some scatter in models
Xco=1-3 cm>2K km s !, more than
observations

(see also Smith et al. 2014, Shetty et
al. 201 I')
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Conclusions

* From global simulations, 3 outcomes:

- no / too little feedback: population of strongly bound,
infinitely long-lived spherical clouds

- moderate feedback: clouds and ISM exhibit
characteristics comparable to those observed

- too much feedback: spiral structure disrupted
* Feedback and shear important for cloud dispersal

e Zoom in simulations seem to confirm results of global
simulations

e Starting to characterise ISM with CO and HI maps



