Formation and Evolution of Star Clusters

Michael Fall KITP Conference

Mass Functions: Stars and Galaxies

Stars

Galaxies

Young Cluster

Old Cluster

LMC & SMC

M51

Mass Functions: Young Clusters

different ages different galaxies

 $dN/dM \sim M^{\beta}$ with $\beta \approx -2.0$

Mass Functions: Molecular Clouds and Clumps

Wong et al. 2008

Heyer et al. 2001

 $dN/dM \sim M^{\beta}$ with $\beta \approx -1.7$

NA ntennaeae Galaxies

NASA, ESA, and The Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration • HST/ACS • STScI-PRC06-46

Sombero. MIO4

NASA and The Hubble Heritage Team (AURA/STScl) • Hubble Space Telescope ACS • STScl-PRC03-28

Mass Functions: Young and Old Clusters

Questions

1. Why do the mass functions of young clusters and molecular clouds and clumps have similar (power-law) shapes?

2. Why do the mass functions of young clusters of different ages have nearly the same (power-law) shape?

3. Why do the mass functions of old (globular) clusters have such different (non-power-law) shapes from those of young clusters?

Mass Functions: Molecular Clouds and Clumps

Heyer et al. 2001

Wong et al. 2008

2

3

log(M_{LTE}) [M_o]

umps

5

Correction for mass-dependent lifetimes (CIMF): $dN/dM \sim M^{\beta}$ with $\beta \approx -2.0$ => Star-formation efficiency approx independent of mass

Feedback Processes

1. Protostellar outflows (momentum driven)

2. Photoionization heating (momentum driven)

3. Radiation pressure (momentum driven)

4. Stellar winds (momentum or energy driven)

5. Supernovae (momentum or energy driven)

Gas Expulsion by Stellar Feedback

Star Formation Efficiency

Observed radius vs mass for MW clumps $R \sim M^{\alpha}$ with $\alpha \approx 0.5$

$$\mathcal{E} \propto V_e^3 / R_h \propto M^{(3-5\alpha)/2}$$
 (energy driven),
 $\mathcal{E} \propto V_e^2 / R_h \propto M^{1-2\alpha}$ (momentum driven).

STAR FORMATION EFFICIENCY E Feedback in protocluster: mass M, raduus R Velocity dispersion Vrms = (Ge M/R)2 input energy Ein input momentum Pin Escape Conditions: Ein ~ EAt ~ Ecrit ~ 1 MVesc (energy-driven) Pin ~ PAt ~ Port ~ MVesc (momentum-driven) E & P & My & EM (for At = 2×10°yr) At a Edyn a R/Vrms VEBC = 12 Vrms oc (M/R)2 $\Rightarrow \begin{cases} \mathcal{E} \propto M^{3/2} R^{-5/2} \propto M^{(3-5\alpha)/2} \quad (energy) \\ \mathcal{E} \propto M R^{-2} \quad \alpha M^{1-2\alpha} \quad (momentum) \end{cases}$

Stellar Dynamical Disruption Processes

1. Stellar mass loss with tidal limitation ($10^7 \text{ yr} < t < 10^8 \text{ yr}$)

2. Tidal disturbances by molecular clouds ($t > 10^8$ yr)

3. Stellar dynamical "evaporation" ($t > 10^9$ yr)

Stellar Mass Loss with Tidal Limitation M vs t for different c (W_0) and IMF

Fukushige & Heggie 1995

Disruption by Stellar Mass Loss with Tidal Limitation Depends on Concentration (dimensionless binding energy)

Observed concentration vs mass for MC clusters: No correlation

TIDAL DISPUPTION Catastrophic Regime -disruption by a single strong encounter GMC chister To a <u>Phelust</u> Mp np 1. Diffusive Regime -disruption by a series of weak encounters GMC Chuster GM GMC ovra

Tidal Disturbances by Molecular Clouds

Disruption Timescale

 $au_d \propto rac{
ho_h^{1/2}}{M_p n_p}$

 $au_d \propto rac{\sigma_v r_{hp}^2
ho_h}{M_p^2 n_p}$

(catastrophic regime),

(diffusive regime).

Observed density vs mass for MC clusters: No correlation

Stellar Dynamical Evaporation (M vs t)

Fokker-Planck Models

Gnedin et al 1999

N-Body Models Baumgardt & Makino 2003

Evolution of Mass Function $\psi(M,t)$

Defn: $\psi(M,t)dM$ is the number of clusters with masses in (M, M+dM) at time *t*

Continuity equation for a coeval population of clusters: $\psi(M,t) = \psi_0(M_0) |\partial M_0 / \partial M|$

Procedure:

Step 1. Mass-removal processes $=> M(M_0,t)$ Step 2. Invert $=> M_0(M,t)$ Step 3. Specify initial mass function $\psi_0(M_0)$ Step 4. Solve for evolved mass function $\psi(M,t)$

Mass Functions: Late Evolution

Note very different forms <

1000

Young

Old

Conclusions

1. Young clusters are disrupted by stellar feedback, stellar mass loss, and tidal disturbances

2. The young cluster mass function depends on the protocluster radius-mass relation and the cluster concentration-mass and density-mass relations

3. Old clusters are disrupted mainly by stellar dynamical evaporation

4. The old cluster mass function is very similar to that of globular clusters, irrespective of initial conditions

References

1. Fall & Zhang (2001) ApJ

2. McLaughlin & Fall (2008) ApJ

3. Fall, Krumholz, & Matzner (2010) ApJ

4. Fall & Chandar (2012) ApJ

