Feedback in a 100Mpc box: the Illustris simulation

Shy Genel ITC/Harvard

Hernquist, Sijacki, Springel, Torrey, Vogelsberger

Can realistic galaxies form in ΛCDM ?

Can realistic galaxies form in ΛCDM ?

Scannapieco et al. 2012

"Aquila"
comparison
project:
Problem
forming a disk,
even with
feedback

The Illustris Simulation

- A (106.5 Mpc)³ box run to z=0
- Baryonic resolution: 1.3×10⁶ M_{sun}
- Resolution elements: 2×1820³
- N-body+hydro with Arepo
- Galaxy formation physics (SF, winds, AGN...)
- Gravitational spatial resolution: 0.7-1.4 ckpc
- WMAP-7 cosmology
- 10 M>10¹⁴M_{sun} halos @ z=0
- >10³ M≈10¹²M_{sun} halos @ z=0

Galaxy formation physics

• Galactic winds

(à-la Springel & Hernquist 2003)

- Kinetic
- Energy scaling, using 1.1×10⁵¹erg/SN
- Decoupled

• Black Holes

(à-la Springel 2005, Sijacki 2007)

Bondi accretion & mergers
Thermal ('quasar-mode'), bubble ('radio-mode'), and radiative feedback

Tuning feedback parameters

Constraints used for tuning feedback parameters:

2013

Baryon conversion efficiency

Cosmic SFR density

Results

I. Galaxy bimodality

Cosmic star-formation rate history

Contributions from different halo masses reproduced well,

except too much SF in 10^{11} - $10^{12}M_{sun}$ halos @ z<~1

SFR in different halo masses

Cosmic SFR density

Galaxy morphological bimodality

1.3 Мрс Galaxy bimodality 2×10¹⁴M_{sun} halo $10^{12-13}M_{sun}$ halos R-2 R-3 R-4 R-5 R-6 B-5 B-6 B-3 B-12 R-8 B-8 B-10 B-11 R-7 R-9 R-10 R-11 R-12 B-7 B-9 B-13 B-14 B-15 B-16 B-17 B-18 R-13 R-14 R-15 R-16 R-17 R-18 B-20 B-21 B-22 B-23 R-19 R-20 R-21 R-22 R-23 R-24 B-24* R-26 R-27 R-28 B-26 B-27 B-25 B-28 B-29 B-30 R-25 R-29 R-30 B-35 R-31 R-32 R-33 R-34 B-32 B-33 R-35 R-36 B-31 B-34 B-36 B-40 B-41 R-37 R-38 R-39 R-40 R-41 R-42 B-37 B-38 B-39 B-42

Galaxy color bimodality

SF activity and galaxy structure at z=0

Co-evolution of size and SFR

Barro+ 2013

- Massive galaxies quench early on, and then `inflate'
- Low-mass galaxies quench later, and gradually `compact'

Results

II. High-z galaxies

Stellar mass functions @ $0 \le z \le 7$

- Potential caveats:
 - Faint-end slope too steep
 - Suppression at massive-end too weak @ z<1

M_*-M_{halo} relation @ $0 \le z \le 4$

Low-mass end: normalization increases with cosmic time
High-mass end: no redshift evolution – conspiracy of galactic winds and AGN?

Mock HUDF

Mock HUDF

HST

Mock HST Deep Fields

 \rightarrow too many stars

Mock HST Deep Fields

HST observation

+ metal line cooling
+ stellar mass loss
→ even more (young) stars

- - - - -

Mock HST Deep Fields

+ SNII feedback

HST observation

 \rightarrow too many blue galaxies

Specific star-formation rates

 Observed 'bump' at z~1-3 not reproduced by any hydrodynamical simulation, including Illustris

 Simulated evolution follows closely the DM halo accretion rates

Mass dependence reversed
 between halos and galaxies, as
 observed

Specific star-formation rates

- Observed 'bump' at z~1-3 not reproduced by any hydrodynamical simulation, including Illustris
- Simulated evolution follows closely the DM halo accretion rates
- Mass dependence reversed between halos and galaxies, as observed

Results

III. Baryonic effects on matter distribution

Baryonic effects on halo masses

 Hydrodynamics, cooling, galactic winds, AGN – all affect halo masses, at difference mass scales

 Strong sensitivity to the included physics and to their implementation

 Both enhancement and suppression of halo masses are possible

Baryonic effects on halo masses

 Hydrodynamics, cooling, galactic winds, AGN – all affect halo masses, at difference mass scales

 Strong sensitivity to the included physics and to their implementation

 Both enhancement and suppression of halo masses are possible

Baryonic effects on halo masses

 Hydrodynamics, cooling, galactic winds, AGN – all affect halo masses, at difference mass scales

 Strong sensitivity to the included physics and to their implementation

 Both enhancement and suppression of halo masses are possible

 Circular velocity profiles out to R₂₀₀ for a range of stellar masses

• DM-only simulation ("Illustris-Dark") is matched to hydro simulation to give DMonly profiles as a function of "stellar mass"

• NFW: peak V_c reached @ r>0.1R₂₀₀

- Circular velocity profiles out to R₂₀₀ for a range of stellar masses
- All profiles within r<0.1R₂₀₀ are rising or flat
- Gas contribution always small
- Baryons (stars) control V_{max} only within 10^{10.5}<M_{*}<10^{11.5}

- Circular velocity profiles out to R₂₀₀ for a range of stellar masses
- DM responds to baryons:
 - contraction @ 10^{10.5}<M_{*}<10^{11.5}
 - @ M_{*}>10^{11.5:}
 - small-radius contraction
 - large-radius
 weak expansion

Summary

- Galaxy bimodality can be obtained; (currently) only with AGN FB
- Reasonable stellar mass build-up across cosmic time obtained with energy-scaling of galactic winds
- Baryons affect matter distribution in a mass, radius, and redshift-dependent ways

Summary

• We have just recently started to

 constrain feedback models with hydrodynamical cosmological simulations

using a plethora of observations

— on various scales

- all combined