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Motivating questions: 

What are the relative roles of feedback and 
accretion in star cluster formation (SCF)? 

What parameters characterize SCF? 

Where does star cluster formation (SCF) fit in 
the continuum of formation phenomena? 

What terminates star cluster formation? 

Which GMC properties control the outcome? 
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Abundant cyanopolyynes as a probe of infall in Serpens South 3

Figure 1. Spitzer RGB (8µm, 4.5µm, 3.6µm) image of the Serpens South protocluster (Gutermuth et al. 2008). White contours show
integrated HC7N J = 21−20 emission at 0.15 K km s−1 (4 σ), 0.3 K km s−1, 0.6 K km s−1, 0.9 K km s−1, and 1.2 K km s−1. Individual
HC7N emission peaks discussed in the text are labeled. The physical scale assuming d = 260 pc is shown. Yellow contours show the map
extent where the rms noise per velocity channel of width 0.15 km s−1 is σ < 0.1 K.

the rms noise between sub-maps (see below). The data were
taken in position-switching mode, with a common off po-
sition (R.A. 18:29:18, Decl. -2:08:00) that was checked for
emission to the TMB ∼ 0.1K level in the NH3 (1,1) transi-
tion.

The data were reduced and imaged using the GBT
KFPA data reduction pipeline (version 1.0) and calibrated
to TMB units, with the additional input of relative gain fac-
tors for each of the beams and polarizations derived from
standard observations (listed in Table 1). The absolute cal-
ibration accuracy is estimated to be ∼ 10 %. The data were

then gridded to 13′′ pixels in AIPS. Baselines were fit with
a second order polynomial. The mean rms noise in the off-
line channels of the resulting NH3 (1,1), (2,2), and HC7N
data cubes is 0.06K per 0.15 km s−1 velocity channel, with
higher values (∼ 0.1K) near the map edges where fewer
beams overlapped. In general, the noise in the map is con-
sistent, with a 1-σ variation of 0.01 K in the region where
all the KFPA beams overlap.

Spitzer: Gutermuth + 08 HC7N: Friessen + 13
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Parameters for rapid inflow in SCF

Dimensional: 
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Ṁin

Inflow
GṀin
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Ṁinj3in
G2M3

c

=

Γrot

Effic.
Ṁc
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ABSTRACT

1. INTRODUCTION

This work is meant to address several outstanding
questions in the theory of star cluster formation: (1)
What is the relative importance of accretion power and
stellar feedback in controlling the dynamical properties
of proto-cluster regions? (2) How do the theories of star
formation (on a smaller scale) and molecular cloud for-
mation (on a larger scale) bear on star cluster formation?
(3) What is the influence of initial conditions, especially
the filamentary nature of molecular cloud structure? (4)
How can the parameters which define cluster formation
best be derived from observations, such as those of the
Serpens South region?

2. PARAMETERS OF RAPID ACCRETION

Let us suppose that at any time our cluster-forming
region, or ‘clump’, can be described by a total mass Mc,
of which a fraction fg is in gas and 1 − fg is in stars,
and that its internal motions are described by a total
one-dimensional velocity dispersion σc which is related
to the kinetic energy T = (3/2)Mcσ2

c , and which can be
decomposed into thermal and non-thermal parts: σ2

c =
c2s + σNT,c

2 (for isothermal sound speed cs). We idealize
the clump as a sphere, while acknowledging that it and
its surroundings contain significant structure.
As in the studies of accreting molecular clouds by Gold-

baum et al. (2011) and that of rapidly-accreting star
system formation by Kratter et al. (2010), we suppose
that matter falls from an external reservoir through the
clump radius (Rc) at a rate Ṁin. We assume, therefore,
that there exists a prolonged period of mass accumula-
tion during the assembly of a cluster, as opposed to a
monolithic collapse. To account for the fact that matter
may also be continuously ejected from the clump at an
average rate Ṁej, for instance by protostellar outflows
(Matzner & McKee 2000), we define the clump accretion
efficiency εin = Ṁc/Ṁin = 1 − Ṁej/Ṁin. Furthermore,
we imagine that there was a time t = 0 at which clump
assembly began: then, the parameter ηM = Ṁct/Mc
compares the current accretion rate to its historical av-
erage, and is constant in power-law growth for which
Mc(t) ∝ tηM and Ṁc ∝ Mc

1−1/ηM .
Several dimensionless parameters capture key aspects

of the clump’s physical state and its interaction with the
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surroundings. One is the virial parameter

αc =
5σc

2Rc

GMc
; (1)

another is the dimensionless accretion rate

ξc =
GṀin

σc
3

; (2)

and a third is the star formation rate per gas mass per
free-fall time

SFRff =
Ṁ∗tff
fgMc

, (3)

where tff = [π2Rc
3/(8GMc)]1/2 is the clump free-fall

time.
Although εin, αc, ξc, and SFRff only crudely describe

the dynamical state, they suffice to specify some ratios
of interest. The clump’s free-fall time tff and age t are
related to its crossing time Rc/σc by

tff ::
Rc

σc
:: t = 0.50αc

1/2 :: 1 :: 5
ηM

εinαcξc
, (4)

the ratio of star formation to clump growth is

Ṁ∗

Ṁc

=
10.1 SFRff

αc
3/2

fg
εinξc

, (5)

and the infall rate and star formation rate are related to
Mc/tff by

Ṁin :: Ṁ∗ ::
Mc

tff
=

αc
3/2ξc
10.1

:: fgSFRff :: 1 (6)

In addition to fg, ηM , εin, α, SFRff , and ξc, a cou-
ple other parameters help to define the character of our
clump. One measures rotating infall: if 〈j〉in is the mean
vector angular momentum of infall, then

Γ =
Ṁin |〈j〉in|

3

G2Mc
3 (7)

measures rotation, in the sense that it compares the Ke-
pler time scale of newly-arriving matter in units of the
accretion time scale. Alternately, the Kepler radius of in-
falling matter in a Kepler potential of mass Mc is related
to the clump radius by

RKep

Rc
=

5

αc

(
Γ

ξc

)2/3

. (8)
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Ṁ∗tff
fgMc

, (3)

where tff = [π2Rc
3/(8GMc)]1/2 is the clump free-fall

time.
Although εin, αc, ξc, and SFRff only crudely describe

the dynamical state, they suffice to specify some ratios
of interest. The clump’s free-fall time tff and age t are
related to its crossing time Rc/σc by

tff ::
Rc

σc
:: t = 0.50αc

1/2 :: 1 :: 5
ηM

εinαcξc
, (4)

the ratio of star formation to clump growth is

Ṁ∗
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2 Matzner and Jumper

In their study of initially axisymmetric accretion, Kratter
et al. (2010) varied Γ along with a parameter like ξc (or
more precisely, either M3ξc or ξ∗, both defined below)
to delineate thresholds for fragmentation.
Why is star and early galaxy formation often disky in

nature, while star cluster formation is not? All these en-
vironments have αc of order unity (because they are self-
gravitating rotational motions are included within αc);
therefore, the critical distinction must be the value of
Γ/ξc = [σc |〈j〉in| /(GMc)]3, along with the Mach number
of turbulence. The strength of star formation feedback
is likely to play a role in this distinction through its ef-
fect on σc. Variability in the direction of jin, and the
relevant value of ηM , are also important considerations.
In the remainder of the paper we shall assume that ro-
tation is negligible for star cluster formation, so Γ is not
an important parameter.
The Mach number M = σNT,c/cs compares bulk and

thermal motions; in the theory for steady turbulence-
regulated star formation proposed by Krumholz & Mc-
Kee (2005), SFRff is a slowly-varying function of αc and
M which takes values of about 1/30 for typical cluster-
forming environments.
Another parameter arises from the mean kinetic pres-

sure within the clump,

Pc = ρgσc
2 =

0.47

fg
αcGΣ̄2

c , (9)

if ρg = 3fgMc/(4πRc
3) and Σ̄c = fgMc/(πRc

2) are the
mean clump gas density and total gas column density,
respectively. If the clump is subjected to a confining
pressure Pext (in addition to the effective pressures of
infall and outflow; see Goldbaum et al. 2011), then the
new parameter Pext/Pc indicates the degree of pressure
confinement.

2.1. Aspects of star formation and the stellar
distribution function

These latest definitions allow us to specify aspects
of the star formation process. If we define a char-
acteristic thermal Jeans or Bonnor-Ebert critical mass
MBE = 1.18c4s/(G

3/2Pc
1/2), then the clump contains

Mc

MBE
=

4.63f1/2
g

αc
3/2

(M2 + 1)2 (10)

Jeans masses. Suppose individual stars acquire their
masses at an average rate ṁ∗ = ε∗ξ∗c3s/G, as a result
of infall at a rate ξ∗c3s/G of which only ε∗ lands on the
star; then the average number of accreting protostars at
any time is

Ṁ∗
ṁ∗

=
10.1 SFRff

αc
3/2

fg
ε∗ξ∗

(M2 + 1)3/2. (11)

If we imagine that the mean stellar mass is roughly m̄∗ #
ε∗MBE, then each star accretes for a period

m̄∗
ṁ∗

# 0.22αc
3/2

(M2 + 1)1/2
ξcεin

ηMξ∗f
1/2
g

t. (12)

Intriguingly, the characteristic mass and duration of in-
dividual star formation both increase with time, unless
dimensionless parameters like M vary to prevent this.
To gain some insight into the end product of star clus-

ter formation, we define ê∗ to be the amplitude of the
stellar distribution function (dN∗/d3x d3v), normalized
such that, in a Maxwellian distribution, the stellar num-
ber density is

n∗ = ê∗σ
3
∗ (13)

where 3σ2
∗ is the mean kinetic energy of the stars per

unit mass. For an isotropic DF the r.m.s. stellar spe-
cific angular momentum is j∗(r) =

√
2rσ∗(r). Adia-

batic invariance implies that action variables are con-
served along slowly perturbed stellar orbits. Once the
stellar population has been established, ê∗ ∝ dN∗/d(j3∗)
is likewise conserved. This conservation is not perfect:
f∗ can be altered by non-adiabatic exchanges of energy
with gas through the time varying gravitational potential
(such as dynamical drag [Ostriker 1999], turbulent stir-
ring, and impulsive mass ejection – most of which lower
ê∗) – and scrambled via mergers or through two-body
interactions – which may be accelerated by the stellar
mass function, stellar multiples, and the presence of ini-
tial substructure (e.g. Proszkow & Adams 2009; Allison
et al. 2009; Moeckel & Bonnell 2009). Nevertheless, it
may be worthwhile to track the distribution of ê∗ with
stellar mass,1 as some of the stratification in ê∗(M∗) may
be preserved; moreover an impulsive process can main-
tain stellar angular momenta (if not isotropy), e.g., if it
is spherically symmetric. The definition of ê∗ implies

m̄∗ ê∗(M∗)=Kê
3M∗

4πRc(M∗)3σc(M∗)3

=
Kê
ξc

[
3.1(1− fg)

αc

]3 Ṁin

G2M∗
2

=

(
3.1

αc

)3 (1− fg)2ηMKê
εinξcG2t(M∗)M∗

(14)

where by σc(M∗), Rc(M∗), and t(M∗) we mean the values
of these clump properties when the stellar mass reaches
M∗, and where the parameter Kê accounts for details
like a tendency for stars to form in denser gas regions
which have correspondingly lower turbulent velocities
(e.g., Proszkow et al. 2009; Girichidis et al. 2012). Equa-
tion (14) indicates that stars which formed during clump
accretion may preserve an imprint of the accretion his-
tory.

2.2. Self-similar virialized accretion

Equations (4)–(6) simply re-express definitions (1)–(3)
and contain no new dynamics. However, under certain
conditions we consider below, it may be possible to en-
ter a state of self-similar, virialized, power-law growth in
which ηM , fg, εin, ξc, and αc are constant in time. In

1 The enclosed stellar mass M∗ is not an integral of motion;
however its average over an orbit is conserved so long as integrals
like angular momentum increase with M∗.
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Figure 1. Two examples of single, binary, and multiple systems. The resolution across each panel is 328 × 328 grid cells. The single runs are ξ = 2.9, Γ = 0.018
(top), ξ = 1.6, Γ = 0.009 (bottom). The binaries are ξ = 4.2, Γ = 0.014 (top), ξ = 23.4, Γ = 0.008, (bottom). The multiples are ξ = 3.0, Γ = 0.016 (top),
ξ = 2.4, Γ = 0.01 (bottom). Black circles with plus signs indicate the locations of sink particles. These correspond to runs 5, 1, 9, 16, 7, and 4, respectively.
(A color version of this figure is available in the online journal.)

fragmentation; Figure 1 depicts examples of each outcome.
We use these three possible morphologies to organize our
description of the experiments. We explore the properties of
each type of disk below as well as examine the conditions at the
time of fragmentation.

The division between single and fragmenting disks in ξ and
Γ is relatively clear from our results, as shown in Figure 2.
Several trends are easily identified. First, there is a critical ξ
beyond which disks fragment independent of the value of Γ.
Below this critical ξ value, there is a weak stabilizing effect of
increasing Γ. As ξ increases, disks transition from singles into
multiples, and finally into binaries. We discuss the distinction
between binaries and multiples in Section 5.4. This stabilizing
effect of Γ is predicted by Equation (23), although it is somewhat
counter intuitive. We discuss in Section 5.3 that the stabilization
is often masked by thermal effects in real collapsing systems.

In Table 1, we list properties of the final state for all of
our runs, their final multiplicity (S, B, or M for single, binary,
or multiple, respectively), and the disk-to-star(s) mass ratio
µf measured at the time at which we stop each experiment,
as well as the maximum resolution λn. Note that the disk
extends somewhat beyond Rk,in: therefore, the disk as a whole
is somewhat better resolved than the value of λn would suggest.
For the disks which fragment, we also list the values of µf , λf ,
and Q just before fragmentation occurs.

In Table 2, we describe those disks which do not fragment: we
list the analytic estimate for the characteristic value of Toomre’s

Q, Qd, the measured minimum of Q2D (Equation (29)), the
radial power law kΣ which characterizes Σ(r) for a range of radii
extending from the accretion zone of the inner sink particle to
the circularization radius Rk,in, the final disk resolution, λn, and
the characteristic disk radius, Rd (Equation (21)).

5.1. The Fragmentation Boundary and Q

It is difficult to measure a single value of Q to characterize
a disk strongly perturbed by GI, so we consider two estimates:
a two-dimensional measurement Q2D, and a one-dimensional
measure Qav(r) based on azimuthally averaged quantities.

Q2D(r,φ) = csκ

πGΣ
, (29)

Qav(r) = c̄s(r)κ̄(r)

πGΣ̄(r)
, (30)

where bars represent azimuthal averages, and κ is calculated
directly from the gravitational potential of the disk+stars. As
Figure 3 shows, the two-dimensional estimate shows a great
deal of structure which is not captured by the azimuthal average,
let alone by Qd. Moreover, while the minimum of the averaged
quantity is close to 2, the two-dimensional quantity drops to
Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
tity (smoothed over a local Jeans length to exclude meaningless
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Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
tity (smoothed over a local Jeans length to exclude meaningless
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Figure 1. Two examples of single, binary, and multiple systems. The resolution across each panel is 328 × 328 grid cells. The single runs are ξ = 2.9, Γ = 0.018
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(A color version of this figure is available in the online journal.)

fragmentation; Figure 1 depicts examples of each outcome.
We use these three possible morphologies to organize our
description of the experiments. We explore the properties of
each type of disk below as well as examine the conditions at the
time of fragmentation.

The division between single and fragmenting disks in ξ and
Γ is relatively clear from our results, as shown in Figure 2.
Several trends are easily identified. First, there is a critical ξ
beyond which disks fragment independent of the value of Γ.
Below this critical ξ value, there is a weak stabilizing effect of
increasing Γ. As ξ increases, disks transition from singles into
multiples, and finally into binaries. We discuss the distinction
between binaries and multiples in Section 5.4. This stabilizing
effect of Γ is predicted by Equation (23), although it is somewhat
counter intuitive. We discuss in Section 5.3 that the stabilization
is often masked by thermal effects in real collapsing systems.

In Table 1, we list properties of the final state for all of
our runs, their final multiplicity (S, B, or M for single, binary,
or multiple, respectively), and the disk-to-star(s) mass ratio
µf measured at the time at which we stop each experiment,
as well as the maximum resolution λn. Note that the disk
extends somewhat beyond Rk,in: therefore, the disk as a whole
is somewhat better resolved than the value of λn would suggest.
For the disks which fragment, we also list the values of µf , λf ,
and Q just before fragmentation occurs.

In Table 2, we describe those disks which do not fragment: we
list the analytic estimate for the characteristic value of Toomre’s

Q, Qd, the measured minimum of Q2D (Equation (29)), the
radial power law kΣ which characterizes Σ(r) for a range of radii
extending from the accretion zone of the inner sink particle to
the circularization radius Rk,in, the final disk resolution, λn, and
the characteristic disk radius, Rd (Equation (21)).

5.1. The Fragmentation Boundary and Q

It is difficult to measure a single value of Q to characterize
a disk strongly perturbed by GI, so we consider two estimates:
a two-dimensional measurement Q2D, and a one-dimensional
measure Qav(r) based on azimuthally averaged quantities.

Q2D(r,φ) = csκ
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, (29)
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where bars represent azimuthal averages, and κ is calculated
directly from the gravitational potential of the disk+stars. As
Figure 3 shows, the two-dimensional estimate shows a great
deal of structure which is not captured by the azimuthal average,
let alone by Qd. Moreover, while the minimum of the averaged
quantity is close to 2, the two-dimensional quantity drops to
Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
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We use these three possible morphologies to organize our
description of the experiments. We explore the properties of
each type of disk below as well as examine the conditions at the
time of fragmentation.

The division between single and fragmenting disks in ξ and
Γ is relatively clear from our results, as shown in Figure 2.
Several trends are easily identified. First, there is a critical ξ
beyond which disks fragment independent of the value of Γ.
Below this critical ξ value, there is a weak stabilizing effect of
increasing Γ. As ξ increases, disks transition from singles into
multiples, and finally into binaries. We discuss the distinction
between binaries and multiples in Section 5.4. This stabilizing
effect of Γ is predicted by Equation (23), although it is somewhat
counter intuitive. We discuss in Section 5.3 that the stabilization
is often masked by thermal effects in real collapsing systems.

In Table 1, we list properties of the final state for all of
our runs, their final multiplicity (S, B, or M for single, binary,
or multiple, respectively), and the disk-to-star(s) mass ratio
µf measured at the time at which we stop each experiment,
as well as the maximum resolution λn. Note that the disk
extends somewhat beyond Rk,in: therefore, the disk as a whole
is somewhat better resolved than the value of λn would suggest.
For the disks which fragment, we also list the values of µf , λf ,
and Q just before fragmentation occurs.

In Table 2, we describe those disks which do not fragment: we
list the analytic estimate for the characteristic value of Toomre’s

Q, Qd, the measured minimum of Q2D (Equation (29)), the
radial power law kΣ which characterizes Σ(r) for a range of radii
extending from the accretion zone of the inner sink particle to
the circularization radius Rk,in, the final disk resolution, λn, and
the characteristic disk radius, Rd (Equation (21)).

5.1. The Fragmentation Boundary and Q

It is difficult to measure a single value of Q to characterize
a disk strongly perturbed by GI, so we consider two estimates:
a two-dimensional measurement Q2D, and a one-dimensional
measure Qav(r) based on azimuthally averaged quantities.
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where bars represent azimuthal averages, and κ is calculated
directly from the gravitational potential of the disk+stars. As
Figure 3 shows, the two-dimensional estimate shows a great
deal of structure which is not captured by the azimuthal average,
let alone by Qd. Moreover, while the minimum of the averaged
quantity is close to 2, the two-dimensional quantity drops to
Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
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fragmentation; Figure 1 depicts examples of each outcome.
We use these three possible morphologies to organize our
description of the experiments. We explore the properties of
each type of disk below as well as examine the conditions at the
time of fragmentation.

The division between single and fragmenting disks in ξ and
Γ is relatively clear from our results, as shown in Figure 2.
Several trends are easily identified. First, there is a critical ξ
beyond which disks fragment independent of the value of Γ.
Below this critical ξ value, there is a weak stabilizing effect of
increasing Γ. As ξ increases, disks transition from singles into
multiples, and finally into binaries. We discuss the distinction
between binaries and multiples in Section 5.4. This stabilizing
effect of Γ is predicted by Equation (23), although it is somewhat
counter intuitive. We discuss in Section 5.3 that the stabilization
is often masked by thermal effects in real collapsing systems.

In Table 1, we list properties of the final state for all of
our runs, their final multiplicity (S, B, or M for single, binary,
or multiple, respectively), and the disk-to-star(s) mass ratio
µf measured at the time at which we stop each experiment,
as well as the maximum resolution λn. Note that the disk
extends somewhat beyond Rk,in: therefore, the disk as a whole
is somewhat better resolved than the value of λn would suggest.
For the disks which fragment, we also list the values of µf , λf ,
and Q just before fragmentation occurs.

In Table 2, we describe those disks which do not fragment: we
list the analytic estimate for the characteristic value of Toomre’s

Q, Qd, the measured minimum of Q2D (Equation (29)), the
radial power law kΣ which characterizes Σ(r) for a range of radii
extending from the accretion zone of the inner sink particle to
the circularization radius Rk,in, the final disk resolution, λn, and
the characteristic disk radius, Rd (Equation (21)).

5.1. The Fragmentation Boundary and Q

It is difficult to measure a single value of Q to characterize
a disk strongly perturbed by GI, so we consider two estimates:
a two-dimensional measurement Q2D, and a one-dimensional
measure Qav(r) based on azimuthally averaged quantities.

Q2D(r,φ) = csκ

πGΣ
, (29)

Qav(r) = c̄s(r)κ̄(r)

πGΣ̄(r)
, (30)

where bars represent azimuthal averages, and κ is calculated
directly from the gravitational potential of the disk+stars. As
Figure 3 shows, the two-dimensional estimate shows a great
deal of structure which is not captured by the azimuthal average,
let alone by Qd. Moreover, while the minimum of the averaged
quantity is close to 2, the two-dimensional quantity drops to
Q ∼ 0.3. We find that the best predictor of fragmentation is the
minimum of a smoothed version of the two-dimensional quan-
tity (smoothed over a local Jeans length to exclude meaningless
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Figure 2. Distribution of runs in ξ–Γ parameter space. The single stars are
confined to the low ξ region of parameters space, although increasing Γ has a
small stabilizing effect near the transition around ξ = 2 due to the increasing
ability of the disk to store mass at higher values of Γ. The dotted line shows the
division between single and fragmenting disks: Γ = ξ2.5/850. As ξ increases
disks fragment to form multiple systems. At even higher values of ξ disks
fragment to make binaries. We discuss the distinction between different types
of multiples in Section 5.4. The shaded region of parameter space shows where
isothermal cores no longer collapse due to the extra support from rotation.
(A color version of this figure is available in the online journal.)

Table 1
Each Run is Labeled by ξ, Γ, Multiplicity Outcome, the Final Value of the

Disk-to-star(s) Mass Ratio, µ, and the Final Resolution, λn

Run ξ 102Γ N∗ µf λf Q2D µ λn

1 1.6 0.9 S . . . . . . . . . 0.49 99
2 1.9 0.8 S . . . . . . . . . 0.40 88
3 2.2 2.5 S . . . . . . . . . 0.56 82
4 2.4 1.0 M 0.43 77 0.69 0.16 98
5 2.9 1.8 S . . . . . . . . . 0.53 86
6 2.9 0.8 M 0.40 51 0.72 0.14 78
7 3.0 0.4 M 0.33 50 0.48 0.11 77
8 3.4 0.7 M 0.40 66 0.37 0.16 70
9 4.2 1.4 B 0.51 56 0.19 0.33 72
10 4.6 2.1 M 0.54 71 0.42 0.23 123
11 4.6 0.7 B 0.35 28 0.52 0.12 52
12 4.9 0.9 B 0.37 26 0.74 0.19 59
13 5.4 0.4 B 0.38 38 0.33 0.19 64
14 5.4 0.7 B 0.31 49 0.85 0.21 62
15 5.4 7.5 B 0.72 99 0.20 0.59 129
16* 23.4 0.8 B 0.25 5 0.83 0.10 84
17* 24.9 0.4 B 0.15 3 0.59 0.11 61
18* 41.2 0.8 B 0.13 5 1.33 0.10 58

Notes. Values of Γ are quoted in units of 10−2. For fragmenting runs the disk
resolution λf , Q2D (Equation (29)) and µf at the time of fragmentation are
listed as well. S runs are single objects with no physical fragmentation. B’s are
binaries which form two distinct objects each with a disk, and M are those with
three or more stars which survive for many orbits. * indicates runs which are
not sufficiently well resolved at the time of fragmentation to make meaningful
measures of µf and Q.

fluctuations), although Qd shows a similar trend. We use this
smoothed minimum quantity in Table 1, and compare it to the
analytic estimate Qd in Table 2 for non-fragmenting disks.

The critical values of Q at which fragmentation sets in depend
on the exact method used for calculation (e.g., Qav or Q2D). The

Figure 3. Top: Qav in a disk with ξ = 2.9, Γ = 0.018. The current disk radius,
Rk,in is shown as well. Bottom: log(Q2D) (Equation (29)) in the same disk.
While the azimuthally averaged quantity changes only moderately over the
extent of the disk, the full two-dimensional quantity varies widely at a given
radius. Q is calculated using κ derived from the gravitational potential, which
generates the artifacts observed at the edges of the disk. Here and in all figures,
we use δx to signify the resolution.
(A color version of this figure is available in the online journal.)

Table 2
Non-fragmenting Runs (Numbers as from Table 1)

Run ξ 102Γ µ Qd Q2D kΣ λn Rd

1 1.6 0.9 0.49 1.6 0.96 1.5 99 103
2 1.9 0.8 0.40 1.5 1.10 1.3 88 138
3 2.2 2.5 0.56 3.7 0.83 1.8 82 65
5 2.9 1.8 0.53 2.2 0.56 1.7 86 77

Notes. We list values for the characteristic predicted value of Toomre’s Q, Qd

(Equation (23)), as well as the measured disk minimum, Q2D Equation (29).
We also list the slope of the surface density profile, kΣ averaged over several
disk orbits, the final resolutions, and Rd at the end of the run (Equation (21)).

canonical Q = 1 boundary only indicates the instability of
axisymmetric perturbations in razor-thin disks (Toomre 1964).
As discussed by numerous authors, the instability criterion is
somewhat different for thick disks (Goldreich & Lynden-Bell
1965; Laughlin et al. 1997, 1998), and for the growth of higher
order azimuthal modes (Adams et al. 1989; Shu et al. 1990;
Laughlin & Korchagin 1996).

Because our disks are thick, the fragmentation boundary
cannot be drawn in Q-space alone. We use Q2D and µ in
Figure 4 to demarcate the fragmentation boundary. Labeled
curves illustrate that the critical Q for fragmentation depends
on the disk scale height (Equation (18)). At a given value of Q,
a disk with a larger value of µ will have a larger aspect ratio,
and will therefore be more stable. Recall from Equation (18)
that the disk aspect ratio is proportional to (ξ/Γ)1/3.

Star formation: 
parameters map to 
multiplicity
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such a state Rc ∝ tηR where

ηR =
2 + ηM

3
. (15)

Furthermore, insofar as SFRff is reasonably constant, 1−
fg = M∗/Mc equals Ṁ∗/Ṁc during the growth of the
clump; using equation (5) this implies

1

fg
= 1 +

10.1 SFRff

εinξcαc
3/2

. (16)

From equation (14) we can estimate what form the fi-
nal (gas-free) star cluster will take if its DF is Maxwellian
and it expands adiabatically from a phase of self-similar
virialized formation into a singular polytropic sphere
m̄∗n∗ ∝ r−k∗ , in which M∗(r) = 4πm̄∗n∗(r)r3/(3 − k∗).
The Jeans equations for an isotropic DF require σ∗(r)2 =
2(k∗ − 1)GM∗

′(r)/r, so

k∗ =
6

2 + ηM
. (17)

Furthermore, the crossing time r/σ∗(r) within this star
cluster is proportional to the formation time t(M∗) of
those stars which orbit at r, with the proportionality
constant

r(M∗)

σ(M∗)t(M∗)
=

( αc

3.1

)3 εinξc(4− ηM )2

Kê(1− fg)2(2 + ηM )3
. (18)

We note that, in any inside-out collapse model for clus-
ter formation, the singular polytropic structure repre-
sented by equations (17) and (18) has precisely the am-
bient density distribution of the ambient reservoir which
sets Mc ∝ tηM in the first place (McKee & Tan 2003).
The formation time t(M∗) then reflects the dynamical
time of the reservoir, and if ê∗ is conserved then the final
crossing time reflects the formation time. In other words,
if ê∗ keeps its stratification with mass, self-similar accre-
tion creates a miniature, virialized copy of the ambient
reservoir. In reality, equation (18) gives a lower limit on
the final crossing time because of the non-adiabatic ef-
fects which lower ê∗. An extreme example, which is nev-
ertheless common, would be the unbinding of the star
cluster.
Let us return to the premise of this section: what

is required for a clump to experience this sort of self-
similar growth? Clearly its physics must be dominated
by power-law accretion with Ṁin ∝ tηM , as in inside-out
collapse models of star formation (Shu 1977; Myers &
Fuller 1992; McLaughlin & Pudritz 1997; McKee & Tan
2003); the stirring of turbulent motions must maintain a
constant value of ξc; and gravity must remain a signif-
icant force in its evolution. Other parameters must be
negligible, or at least constant.
Consider the influence of external pressure, which typ-

ically grows in time: Pext/Pc ∝ t2(4−ηM )/3. For the spe-
cial case ηM = 4 (Murray & Chang 2012), Pc is itself
constant and so Pext/Pc is as well. But more generally,
so long as Pext reflects the hydrostatic pressure of a par-
ent cloud whose column density is lower than that of
the clump, external pressure is characteristically smaller
than Pc. Indeed this was the conclusion of Bertoldi &

McKee (1992) regarding massive, star-forming clumps in
molecular clouds.
Even if these conditions are met, the self-similar state

can only exist if turbulence is regenerated in such a way
as to keep ξc and αc fixed. We now consider two possi-
ble sources: accretion onto the clump, and feedback by
protostellar outflows.

3. ACCRETION-POWERED TURBULENCE

If the kinetic energy of accreting matter can be incor-
porated efficiently into clump motions, it may be possi-
ble to sustain a turbulent virialized state with accretion
alone (Wang & Abel 2008; Klessen & Hennebelle 2010).
We have examined this possibility within the approxi-
mate treatment of Goldbaum et al. (2011), who include
accretion within a model for molecular cloud evolution
based on the time-dependent virial theorem. Goldbaum
et al. present examples of accreting clouds with no stir-
ring by star formation feedback, all of which collapse
(their Figure 1). Despite this, we sought and found
self-similar solutions to their dynamical equations. We
adopted fiducial values for all of their parameters (for
instance, magnetization: ηB = 1/2; turbulent dissipa-
tion: ηv = 1.2) except that we took Pext = 0 to allow
for self-similar virialized accretion. With the assump-
tions of § 2.2 and no star formation feedback, their dif-
ferential equations for Rc and σc reduce to complicated
algebraic equations for αc and ξc. Adopting a sequence
of values for ηM and their accretion-efficiency parameter
ϕ, we searched numerically for solutions. We typically
found no real positive roots for small values of ϕ, but
for ϕ ! 0.7 and ηM > 0.25 we typically (but not al-
ways) found two positive real roots. Both these roots
have near-unity values of ξc; in one αc is about unity,
while in the other αc is significantly larger (due to in-
flow confinement). We suspect that one corresponds to
an unstable equilibrium and the other a stable one, but
have not investigated their stability using the dynamical
equations.
Our conclusion from this exercise is that the Goldbaum

et al. model is consistent with the hypothesis that ac-
cretion alone can lead to with self-similar growth of a
proto-cluster clump of the type discussed in § 2.2, pro-
vided accreting kinetic energy can be incorporated with
high efficiency. In particular, the fiducial value ϕ = 0.75
adopted by Goldbaum et al. appears to suffice. If such
a state exists, as has been argued for galaxy formation
(Dekel et al. 2009, but see Hopkins et al. 2013), we ex-
pect a region to be characterized by ξc # 1. Even when
a self-similar state is available, Goldbaum et al.’s Figure
1 indicates a cloud may not settle into it from reasonable
initial conditions; as in that work, assistance from stellar
feedback (§ 4) may be critical.
Careful three-dimensional simulations and observa-

tional studies are required to ascertain whether the
purely accretion-powered state holds in nature; indeed
the detailed outcome is likely to depend on the magneti-
zation, density structure, velocity field, and time depen-
dence of the newly-arriving matter, as well as the rota-
tion parameter Γ. (Magnetization and rotation are likely
to be especially important parameters, as they represent
sources of support that cannot immediately be radiated
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warm atomic envelope, allowing a study of the interplay between
accretion and feedback in the simulated clouds. The resulting
clouds were able to attain a state of quasi-virial equilibrium, in
which the supply of gas from the ambient medium balanced the
formation of stars and ejection of gas from H ii regions. Due
to the idealized nature of the subgrid star formation feedback
prescription, in which all H ii regions were powered by a cluster
with the same ionizing luminosity, star formation feedback was
unable to act on the cloud as a whole but could reduce the
global star formation rate by destroying overdensities. Since
the simulation did not include star clusters with large ionizing
luminosities, the cloud as a whole could not be destroyed and star
formation would have eventually consumed all of the gas had
the simulation not been cut off. Even though the simulations
employed a highly idealized star formation prescription, the
computations still required substantial resources to complete
and only allowed insight into the evolution of a single cloud. It
seems that a computationally inexpensive model that includes
a somewhat more sophisticated treatment of star formation
feedback is called for.

In this work, we model the global evolution of GMCs
from their birth as low-mass seed clouds to their dispersal
after a phase of massive star formation. This is done using
an updated version of the semianalytical model of Krumholz
et al. (2006, hereafter Paper I). Using a virial formalism, we
compute the global dynamical evolution of a single cloud while
simultaneously tracking its energy budget. Model clouds form
stars, launch H ii regions, and undergo accretion from their
environments. We are able to investigate the role accretion
plays in maintaining turbulence in molecular clouds and directly
compare to observations of GMCs in the Milky Way and
nearby external galaxies. This work is complementary to the
simulations of Vázquez-Semadeni et al. (2010), since our
simplified global models allow us to survey a large variety of
GMCs at little computational cost while including a much more
sophisticated star formation feedback prescription. We are able
to capture model clouds with masses comparable to the most
massive clouds observed in the Milky Way and nearby galaxies,
allowing us to simulate the sites of the majority of star formation
in these systems (Williams & McKee 1997; Fukui & Kawamura
2010).

We proceed by describing the formulation and implementa-
tion of our GMC model in Section 2. Next, in Section 3, we test
our implementation of accretion. Following this, in Section 4
we perform full simulations and describe the general features
of our simulated clouds. In Section 5, we make comparisons to
observations, focusing on the scaling relations observed to hold
for GMCs as well as the high quality multiwavelength observa-
tions available for GMCs in the Large Magellanic Cloud (LMC).
Lastly, in Section 6, we discuss the limitations inherent in the
simplifying assumptions we make to derive the cloud evolution
equations.

2. GOVERNING EQUATIONS

The GMC evolution model described below allows us to
solve for the time evolution of the global properties of model
molecular clouds. In contrast with previous work, we follow the
flow of gas as it condenses out of the diffuse gas in the envelope
surrounding the GMC and falls onto the cloud. Employing
simplifying assumptions as well as the results of simulations
of compressible MHD turbulence, we derive a set of coupled
ordinary differential equations that govern the time evolution of
the cloud’s mass, radius, and velocity dispersion. Combining the

Figure 1. Schematic overview of the GMC model. A molecular cloud (black)
is embedded in a warm atomic envelope (dark blue). Cool atomic gas (light
blue) flows onto the cloud, where it condenses, recombines into molecules, and
mixes with the cloud. Newborn OB associations (blue stars) drive H ii regions
(orange) and eject ionized winds back into the ambient medium.

(A color version of this figure is available in the online journal.)

governing evolution equations with a set of initial conditions,
model parameters, and a model for the time dependence of
the mass accretion rate based on the gravitational collapse of
the GMC envelope, we can solve for the time evolution of the
cloud. Below, we give an overview of the model, discuss the
formulation of our numerical scheme, describe our parameter
choices, and give a brief description of our treatment of star
formation and our model for the GMC’s gas supply.

2.1. Model Overview

The model we employ below is based on the global GMC
model of Paper I, itself a generalization of the global model for
low mass star formation of McKee (1989), the Eulerian virial
theorem (EVT) of McKee & Zweibel (1992), and the model
for star-forming clumps of Matzner (2001). Employing a virial
formalism, we account for the dynamics and energy budget of
gas contained within an Eulerian volume, Vvir. We separate the
gas within Vvir into three species: virial material, a gaseous
reservoir, and a photoionized wind. A schematic representation
of the components of our model is presented in Figure 1.

By design, each of the three components has a straightfor-
ward physical interpretation. The first component, which we
label virial material, consists of two physically distinct subcom-
ponents: a molecular cloud and a warm atomic envelope that
encloses the cloud. The cloud is assumed to be cold (∼10 K),
molecular, and contained within a spherical volume of radius
Rcl. The ambient medium is composed of warm (∼103 K) and
diffuse atomic gas that encloses the cloud and extends beyond
the virial volume. The second component is a gaseous reser-
voir, which we assume is composed of cold (∼102 K) neutral
material that flows onto the cloud at free fall from beyond the
virial volume. The last component is an ionized wind made up
of hot (∼104 K) ionized gas ejected from the ionization fronts
of blister-type H ii regions. All three components are allowed
to mutually interpenetrate. We restrict interaction between the
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Figure 2. Cloud surface densities (bottom row), virial parameters (second row),
velocity dispersions (third row), and radii (top row) for 400 different runs, each
with a different choices for ϕ, as indicated in the color bar. Star formation was
turned off for all runs.
(A color version of this figure is available in the online journal.)

If ϕ = 0, the cloud experiences global collapse in a free-
fall time. Initially, the cloud velocity dispersion decreases,
but inevitably the gravitational term in the velocity dispersion
evolution equation, proportional to−R′/R2, becomes dominant,
and the velocity dispersion begins to diverge. The fact that σcl
diverges as Rcl goes to zero is an artifact. In reality, the highest
density regions would independently fragment and collapse and
the cloud would never undergo a monolithic collapse.

As we increase ϕ, the cloud is able to support itself against
collapse for longer periods. Near ϕ = 0.5, accretion brings in
net positive energy but turbulent dissipation wins out, and the
cloud still eventually collapses. At a critical value, ϕcrit # 0.8,
accretion driven turbulence alone is sufficient to hold up the
cloud against collapse for as long as the reservoir continues
to supply mass to the cloud. The mass, radius, and velocity
dispersion of the cloud increase in such a way as to maintain a
constant virial parameter and surface density.

Since we expect that gas motions driven by accreting dense
clumps should be at least somewhat correlated with the motions
of the infalling clumps, we do not expect a physically realistic
choice of ϕ to be very close to zero. On the other hand, a
model in which a cloud is entirely supported by accretion driven
turbulence seems to preclude the possibility that a significant
fraction of the kinetic energy of infalling gas is radiated away
in an accretion shock. For this reason, we rule out as unphysical
runs with ϕ ≈ 0 and ϕ ! ϕcrit. The precise value of ϕ we will
use in our models that include star formation below depends
on uncertain details of the accretion and mixing of infalling
gas. In practice, we find that even with the energy provided
by star formation feedback, clouds generally undergo free-fall
collapse or reach unreasonably high mean surface densities once
they are primarily composed of accreted material if we choose
ϕ " 0.7. Since clouds are generally not observed to be in global
free-fall collapse, we instead pick a value somewhat higher
that this, ϕ = 0.75, for our fiducial models. This splits the
difference between accretion contributing a negligible amount
of energy to the cloud when ϕ = 0.5 and accretion contributing

the maximum possible amount of energy when ϕ = 1. We
will see below that our fiducial choice broadly reproduces the
observed properties of molecular clouds in the Milky Way and
nearby galaxies.

4. MODELS WITH ACCRETION AND STAR FORMATION

Feedback by the action of ionizing radiation emitted by
newborn stellar associations alters the evolution of a GMC
after the birth of the first massive star cluster. The source of
energy provided by massive star formation can be a significant
component of the energy budget of the entire cloud. For the
remainder of this paper, we consider models with the star
formation prescription described in Section 2.4 turned on.

4.1. Overview of Results

We have run two sets of simulations with parameters chosen to
model conditions in interarm (Σres = 8 M% pc−2) and spiral arm
(Σres = 16 M% pc−2) regions. Besides the two different choices
for the ambient surface density, all other parameters and initial
conditions are identical. The time evolution of a subsample of
runs is plotted in Figure 3 and average properties of the full
sample are presented in Table 2.

The most striking result of our comparison is that the final
mass of our model molecular clouds depends on the assumed
mass accretion history. Clouds evolved with a low accretion
rate, corresponding to conditions in interarm regions, grow
larger than 105 M% less than 30% of the time and very rarely
reach masses comparable to the most massive GMCs in the
Local Group. The vast majority of clouds are instead disrupted
by an energetic H ii region within a few crossing times. The
clouds attain a quasi-equilibrium configuration in which mass
accretion is roughly balanced by mass ejection. Clouds avoid
global collapse by extracting energy from the expansion of H ii
regions.

The evolution of the clouds is characterized by discrete energy
injection events due to the formation of a single massive star
cluster. Once a cluster forms, it ejects a wind and launches an
H ii region. The recoil force of launching the wind leads to an
overall confining ram pressure, causing the radius to decrease
and the surface density to increase. Once the star cluster burns
out, the H ii region expansion decelerates and then stalls. When
the expansion velocity of the H ii region is comparable to the
cloud velocity dispersion, the kinetic energy of the expanding
H ii region is converted into turbulent kinetic energy, causing a
spike in the turbulent velocity dispersion. The turbulent kinetic
energy exponentially decays away over a crossing time, but the
temporarily elevated velocity dispersion increases the turbulent
kinetic pressure, causing the cloud to expand. This leads to
oscillations in the cloud radius and mean surface density. On
the whole, clouds that are not quickly disrupted by H ii regions
are able to survive as quasi-virialized objects for several crossing
times before they are either disrupted or dissociated.

Clouds evolved with a higher ambient surface density, typical
of spiral arm regions in the Milky Way, exhibit significantly
different behavior. Since these clouds accrete mass much faster
than in the low surface density runs, they are not able to
attain steady state between accretion and ejection of mass.
While some clouds are still destroyed by energetic H ii regions
early in their evolution, over 90% of these clouds were able
to accrete their entire reservoir after 25 Myr. At this point,
the clouds are generally quite massive, ∼1.5 × 106 M%. Once
accretion is shut off, the clouds are no longer confined by
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Accretion-only models

Evolution from dynamical virial theorem [Matzner 99, Krumholz+ 06]



What would make this possible? 

Accretion-driven turbulence? 
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Feedback vs. Inflow:  Protostellar outflows 

Outflows: 
  - Accompany all star formation 

- Emit far more momentum than starlight (while they last) 

- Coincide in time with star cluster formation 
- precede, outnumber massive stars’ feedback

Theory: Norman & Silk 80; McKee 89; CDM & McKee 99, 00;  Matzner 07 (but see Banerjee+ 07)
Simulations: Nakamura / Li 06,7,8; Cunningham+ 06; Frank 07; Carroll+ 09; Wang+ 10, Cunningham+ 
09,11, Krumholz + 12, Hansen + 12, Klein 13, Offner & Arce 14, Myers + 14, Federrath+ 14 ... 
Observations: Levrault 84; Myers 88; ... Bally+ 94; Quillen+ 05; Graves+ 10; Nakamura+ 11;  Mottram & 
Brunt 12; Plunkett+ 13  and many more

- Are highly collimated but also exert force at wide angles
[Shu+ 05, CDM & McKee 99]

- Couple well with dense gas on 0.1 parsec scales
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Fig. 5. The outflow mass versus the bolometric luminosity (Lbol). The
symbols are the same as in Fig. 2. The solid line is the least square
linear fit.

outflows vs. bolometric luminosity (Lbol) of the center stellar
objects, shown in Fig. 6. The dashed line shows the equation
Lm = Lbol. The plot shows that for all sources, Lm is less than
Lbol. The closest point to the dashed line is outflow No. 21, the
source L1448 U-star. Bachiller & Cernicharo (1990) pointed
out that it was near the upper edge of the populated zone in the
mechanical power versus stellar luminosity diagram by Lada
(1985). Now that the size of the sample is much larger, the
closest point is still located at the upper edge. The lowest point
represents outflow No. 337, the source GN21.38.9. This is the
lowest-mass Bok globule according to Duvert et al. (1990).

In Fig. 6, the solid line is a linear least-square fit: log Lm =

(−1.98±0.14)+(0.62±0.04) logLbol. The correlation coefficient
is 0.69. One can see that the two lines are not parallel. The
average deviation between the two lines is larger for the high
mass group than the low mass ones. The average values of the
ration Lm/Lbol are 0.033±0.086 and 0.0038±0.017 for the low
mass and high mass group sources, respectively.

Figure 7 is the plot of the force required to drive the out-
flow against the bolometric luminosity of the central source.
The dashed line shows F = Lbol/c. All the outflows are above
the line, which means that the radiation pressure of the central
sources would not be enough to drive the outflows if the ra-
diation photons from the central source were scattered once.
The two plotted parameters are still correlated. The solid
line presents the least square fit for the force of the flow as
a function of the bolometric luminosity: log F = (−0.92 ±
0.15) + (0.648 ± 0.043) log Lbol. The correlation coefficient is
0.72.

Bally & Lada (1983) mapped a sample of sources using a
single telescope; they discovered a weak correlation between
the mechanical luminosity, the required driving force of the
outflow and the bolometric luminosity of the central source.

Fig. 6. The outflow luminosity (Lm) versus bolometric luminosity
(Lbol). The symbols are the same as for Fig. 2. The relation Lm = Lbol

is shown as a dashed line. The solid line is the least square linear fit
line.

Fig. 7. Outflow force F versus bolometric luminorsity (Lbol) of the
associated infrared souces. The symbols are the same as in Fig. 2. The
dashed line presents the relation F = Lbol/c. The solid line is the least
square linear fit.

The correlation means that the energy and momentum of an
outflow is determined by the central luminosity or mass and the
physical driving engines are similar for all the sources (Bally &
Lada 1983). The above authors also pointed out that the scatter
of the plots could be understood as the result of several selec-
tion effects. The uncertainties in determining luminosities of
central sources can cause significant scattering. A large part of

Wu + 2004
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Critical parameter: 
mean outflow momentum 
per stellar mass, vof

Bourke Gutermuth+



Simple force estimate

Feedback vs. Inflow:  Protostellar outflows 

gravity :: inflow force/mass :: outflow force/mass

GMc

R2
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::
Ṁinvesc
Mg

::
Ṁ∗vc
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(
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)3/2 fg
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More complicated estimate: Matzner 07 model

- Couple outflows to turbulent cascade of 
   momentum in self-consistent 
- Account for collimation & mass function 
- Allow escape of momentum (& mass) 
- Allow for externally driven cascade, i.e. 
accretion

σ(r)

4 Matzner and Jumper

away.)

4. OUTFLOW-DRIVEN FEEDBACK

Protostellar outflows have long been recognized as a
ubiquitous signpost of star formation (Heyer et al. 1987;
Parker et al. 1991; Myers et al. 1986; Bontemps et al.
1996), and one that can eject matter from the sites of in-
dividual star formation (Myers et al. 1988; Nakano et al.
1995; Momose et al. 1996; Velusamy & Langer 1998; Ladd
et al. 1998) or the larger clumps in which they are em-
bedded (Levreault 1984; Langer et al. 1986; Goldsmith
et al. 1986; Bally et al. 1994). They have also been impli-
cated in the energization of turbulence on clump scales
(Quillen et al. 2005; Graves et al. 2010; Covey et al. 2010;
Nakamura et al. 2011a,b; Mottram & Brunt 2012; Plun-
kett et al. 2013) although their influence does not ex-
tend to molecular cloud scales (e.g. Arce et al. 2010) as
originally proposed (Norman & Silk 1980; McKee 1989).
The numerical simulations by several groups (Li & Naka-
mura 2006; Cunningham et al. 2006a,b; Nakamura & Li
2007; Frank 2007; Nakamura & Li 2008; Cunningham
et al. 2009; Carroll et al. 2009; Wang et al. 2010; Cun-
ningham et al. 2011) are broadly consistent with these
observational findings (but see Banerjee et al. 2007 for
an opposing view).
Like the motions driven by clump accretion, the early

dynamical feedback produced by protostellar outflows is
also powered by accretion. The potential well is that of
an individual star, rather than that of the cluster, so the
energy per unit mass is greater; however outflow energy
is used less efficiently, as it is associated with a higher
initial velocity. Thanks to strong radiative cooling, a
crude comparison involves the forces, or momentum in-
put rates, of the two processes. If the momentum gener-
ated per stellar mass is vc and if inflow achieves the clump
escape velocity vesc, the outflow-to-inflow force ratio is

Ṁ∗vc

Ṁinvesc
=

3.2fg
αc

SFRffvc

(ξcGṀin)1/3
. (19)

On the right hand side of this equation, the first ratio is
∼ 1 − 2. In the second ratio, the numerator is 1 km s−1

for SFRff = 1/30 and vc = 30 km s−1, while the denom-
inator is 2.4ξc

1/3 km s−1 for Ṁin = 3000M# per Myr.
The actual value of vc is quite uncertain; observational
estimates are usually below 30 km s−1, but issues raised
by Dunham et al. (2013) imply it has systematically been
underestimated. Note also that outflow feedback can re-
duce the denominator somewhat by increasing σc at fixed
Ṁin, and thereby reducing ξc. Regardless, this estimate
indicates that inflow and outflows have comparable net
force; by extension, they should drive turbulent motions
of comparable magnitudes.2

For more detailed predictions we shall rely on the an-
alytical theories of Matzner (2007, hereafter M07) and
Matzner & McKee (2000, hereafter MM00), for turbu-
lence generation and mass ejection, respectively, as these
allow quantitative predictions at the expense of some ap-

2 Note that Matzner (2002) argues on similar grounds that tur-
bulent stirring by H II regions is significant within giant molecular
clouds.

proximations. In particular, both of these works adopt
an ideal force distribution for protostellar outflows and
consider thin-shell evolution on angular sectors (Matzner
& McKee 1999, generalizing Shu et al. 1991 and Shu
et al. 1995). M07 further assumes that outflows and their
angular sectors contribute independently to cloud stir-
ring, and that a one-dimensional line width-size relation
σ(r) can characterize a three-dimensional flow. Although
these assumptions are rather idealized, the dimensional
scalings on which they are based are robust. While ap-
proximate, these theories are fully deterministic apart
from two adjustable parameters, M07’s coupling constant
Λ # 1 and the inflow coupling parameter ϕacc # 1 de-
fined below.

4.1. Outflow-generated turbulence

The M07 theory proposes a steady state solution for
the turbulent line width-size relation which results from
a distribution of collimated outflows of known form in-
teracting with a finite molecular clump. The calcula-
tion is self-consistent, in the sense that each element, or
sector, of each outflow contributes to the turbulent cas-
cade on a merging scale at which the outflow velocity
matches the turbulent line width. The influence of an
external forcing due to accreting matter – which is not
simply additive – can therefore be taken into account.
Moreover, the theory includes a treatment of the loss of
escaping outflow momentum in the same process which
expels mass (MM00). The steady-state nature of this
calculation ought to suffice for our current investigation,
as the outflow crossing time is always shorter than the
clump growth period unless ηM is very large.
Inputs to the M07 theory are the mean wind impulse

per star, Ī = m̄∗vc, and the impulse required to un-
bind the the clump, Iesc = cgfgMcvesc where cg, which
is weakly dependent on clump structure, is slightly ex-
ceeds unity due to the force of gravity within the clump
(M00). Outflows come in varying strengths and are much
stronger on axis than off; therefore we require the dis-
tribution of isotropic-equivalent strength Î, expressed
through the cumulative rate per unit gas mass Ŝ(Î)/ρg,
which is a convolution of the angular and stellar mass
distributions (M07 eq. 30; ρg is the gas density). Finally,
we require the outflow-turbulence coupling coefficient Λ
and the amplitude of any externally-driven turbulent cas-
cade, expressed as an acceleration scale aext. Accounting
for escape, the M07 line width-size relation σ(r) is deter-
mined by

dσ2

dr
= aext +

Λ2

ρg

∫ Ŝ(Iesc)

Ŝ(Î(r))
Î ′dŜ ′, (20)

subject to the boundary condition σ2(r = 0) = c2s and
also to the relation 4πr3ρgσ(r)/3 = Î(r) between a ra-

dial outflow of strength Î(r) and the scale r on which
it will merge (M07 eqs. (15) and (16), taking his φm to
be unity). If the eternally driven cascade is actually the
result of accretion, an upper limit for aext is the total
inflow force divided by the gas mass; therefore

aext = ϕacc
Ṁinvesc
fgMc

(21)

inflow

coupling coeff

impulse distribution

escape of finite 
region



protocluster regions is frequently observed, and this process de-
serves special attention.Matzner &McKee (2000) calculated the
mass ejection rate in this case; we wish to consider the outflows’
dynamical effects.

It is not sufficient to simply evaluate !(r) at the clump size R
using the results of x 4.1. Equation (20) assumes a homogeneous
background on scales larger than r, as !(r) reflects the downward
cascade driven by outflows merging on larger scales, as well as
the upward cascade composed by those outflows as they expand.
However, outflows take momentum, as well as mass, with them
when they escape. Collimation allows this to happen in some di-
rections without the entire clump being unbound. Specifically, es-
cape occurs in direction " when Î (j"j) > I esc, where

I esc ¼ cgMvesc ð31Þ

if M ¼ M (R) and vesc ¼ (2GM /R)1/2 are the mass and escape
velocity of the region, respectively. The factor cg accounts for
gravitational deceleration of an expanding shell, which saps its
momentum. It is close to unity; however, for density distributions
#(r) / r$k# , Matzner & McKee (2000, eq. [A13]) found

cg ¼
9$ 3k#
8$ 3k#

! "1=2

: ð32Þ

This formula holds when outflows are driven impulsively—a safe
assumption, so long as the wind that drives an outflow has a dura-
tion similar to the free-fall time of its collapsing, overdense core.

Given that outflow intensities exceeding I esc do not affect the
clump, the theory of x 4.1 is easy to modify; simply replace Stot

with S(I esc), throwing away the remaining momentum. It is im-
portant to realize that some outflows emerge from the clump sur-
face and rain back on it later; the replacement just suggested treats
them no differently from those that merge within the clump. Al-
though approximate, this approach captures the essential division
between capture and escape.

The effect of outflow eruptions on the velocity scale!(R) is de-
termined by how much outflow momentum is eliminated in this

procedure. It depends, therefore, on the dimensionless ratioI esc /Ī ,
as well as on the shape of S(I ) (see also x 2.1). This dependence
is illustrated in Figure 2, where a slow dependence on I esc /Ī is
apparent. This is natural because the apparent intensity Î can ex-
ceed Ī by a factor of 106.7 in the model plotted—of which 102.7

comes from the range of stellar masses and 104 arises from col-
limation. For a default model in which we adopt the Kroupa
(2001) IMF, take vc to be independent ofM?, consider winds to
be collimated with $0 ¼ 10$2, and take aext ¼ 0, we find

!2t 2

‘2
’ c2s t

2

‘2
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$2%
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r

‘

# $$%h i$1=%
; ð33Þ

where the fit parameters K1, K2, and % are functions of I esc/Ī ,

K1 ¼ 2:33$10 þ 0:32þ 0:40 log
I esc

Ī

! "$10
" #$1=10

; ð34Þ

K2 ¼ 1:22$6 þ 0:55þ 0:26 log
I esc

Ī

! "$6
" #$1=6

; ð35Þ

% ¼ 11þ 15 log(I esc=Ī )
1þ10 log(I esc=Ī )

: ð36Þ

This fit reproduces the numerical evaluation of !(r) to within 5%
for I esc > 6Ī. The quantities used in these formulae are, in con-
venient form,
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Fig. 1.—Linewidth!(r) vs. size, normalized to the characteristic values in x 2,
for outflows driven by stars drawn from the Kroupa (2001) IMF. If outflows are
spherical, the theory of x 4.1.1 gives the lower curve; if they are collimated, the
theory of x 4.1.2 gives the upper curve. At scales much smaller than the driving
scale ‘, ! / r1/2, in agreement with the Larson’s law scalings for molecular clouds
(Larson 1981) as reported by Solomon et al. (1987).

Fig. 2.—Effect offinite clump radius on turbulence driven by collimated out-
flows ($0 ¼ 10$2) driven by stars drawn from the Kroupa (2001) IMF. The thick
curve represents an infinite uniform medium; the other curves are labeled by
I esc /Ī , which determines howmuch momentum is lost from a finite clump. Cir-
cles mark the edge of the region for fiducial parameters nH4 ¼ 1, vc ¼ 40 km s$1,
SFRA ¼ 0:034, and ! ¼ 1.
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mass ejection rate in this case; we wish to consider the outflows’
dynamical effects.
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cascade driven by outflows merging on larger scales, as well as
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However, outflows take momentum, as well as mass, with them
when they escape. Collimation allows this to happen in some di-
rections without the entire clump being unbound. Specifically, es-
cape occurs in direction " when Î (j"j) > I esc, where

I esc ¼ cgMvesc ð31Þ

if M ¼ M (R) and vesc ¼ (2GM /R)1/2 are the mass and escape
velocity of the region, respectively. The factor cg accounts for
gravitational deceleration of an expanding shell, which saps its
momentum. It is close to unity; however, for density distributions
#(r) / r$k# , Matzner & McKee (2000, eq. [A13]) found
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This formula holds when outflows are driven impulsively—a safe
assumption, so long as the wind that drives an outflow has a dura-
tion similar to the free-fall time of its collapsing, overdense core.

Given that outflow intensities exceeding I esc do not affect the
clump, the theory of x 4.1 is easy to modify; simply replace Stot

with S(I esc), throwing away the remaining momentum. It is im-
portant to realize that some outflows emerge from the clump sur-
face and rain back on it later; the replacement just suggested treats
them no differently from those that merge within the clump. Al-
though approximate, this approach captures the essential division
between capture and escape.

The effect of outflow eruptions on the velocity scale!(R) is de-
termined by how much outflow momentum is eliminated in this

procedure. It depends, therefore, on the dimensionless ratioI esc /Ī ,
as well as on the shape of S(I ) (see also x 2.1). This dependence
is illustrated in Figure 2, where a slow dependence on I esc /Ī is
apparent. This is natural because the apparent intensity Î can ex-
ceed Ī by a factor of 106.7 in the model plotted—of which 102.7

comes from the range of stellar masses and 104 arises from col-
limation. For a default model in which we adopt the Kroupa
(2001) IMF, take vc to be independent ofM?, consider winds to
be collimated with $0 ¼ 10$2, and take aext ¼ 0, we find
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Fig. 1.—Linewidth!(r) vs. size, normalized to the characteristic values in x 2,
for outflows driven by stars drawn from the Kroupa (2001) IMF. If outflows are
spherical, the theory of x 4.1.1 gives the lower curve; if they are collimated, the
theory of x 4.1.2 gives the upper curve. At scales much smaller than the driving
scale ‘, ! / r1/2, in agreement with the Larson’s law scalings for molecular clouds
(Larson 1981) as reported by Solomon et al. (1987).

Fig. 2.—Effect offinite clump radius on turbulence driven by collimated out-
flows ($0 ¼ 10$2) driven by stars drawn from the Kroupa (2001) IMF. The thick
curve represents an infinite uniform medium; the other curves are labeled by
I esc /Ī , which determines howmuch momentum is lost from a finite clump. Cir-
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Thanks to collimation, simple estimate is pretty good. 
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Feedback vs. Inflow:  Important points 

1. Accretion-driven turbulence should be strongly 
modified by the presence of accretion

2. Outflow driving may not be strong enough on its 
own.   

3. Even if it is, outflow-driven equilibrium states are 
unstable!   (*)

4. Quite possibly, they need each other. 



What is the nature of proto-cluster accretion? 

Bondi accretion 
[Naiman+ 11, 

Murray & Chang 12]

Inside-out collapse
[Myers & Fuller 92, McLaughlin & Pudritz 97, 

McKee & Tan 03]

2 ! ηM ! 4

Filamentary infall 
[Pon + 11]
ηM ! 1

Colliding 
flows

[Vazquez-Semadeni + 96]

?

Virial parameter of environment
Kauffmann + 13 

Murray+ (today): 



Abundant cyanopolyynes as a probe of infall in Serpens South 3

Figure 1. Spitzer RGB (8µm, 4.5µm, 3.6µm) image of the Serpens South protocluster (Gutermuth et al. 2008). White contours show
integrated HC7N J = 21−20 emission at 0.15 K km s−1 (4 σ), 0.3 K km s−1, 0.6 K km s−1, 0.9 K km s−1, and 1.2 K km s−1. Individual
HC7N emission peaks discussed in the text are labeled. The physical scale assuming d = 260 pc is shown. Yellow contours show the map
extent where the rms noise per velocity channel of width 0.15 km s−1 is σ < 0.1 K.

the rms noise between sub-maps (see below). The data were
taken in position-switching mode, with a common off po-
sition (R.A. 18:29:18, Decl. -2:08:00) that was checked for
emission to the TMB ∼ 0.1K level in the NH3 (1,1) transi-
tion.

The data were reduced and imaged using the GBT
KFPA data reduction pipeline (version 1.0) and calibrated
to TMB units, with the additional input of relative gain fac-
tors for each of the beams and polarizations derived from
standard observations (listed in Table 1). The absolute cal-
ibration accuracy is estimated to be ∼ 10 %. The data were

then gridded to 13′′ pixels in AIPS. Baselines were fit with
a second order polynomial. The mean rms noise in the off-
line channels of the resulting NH3 (1,1), (2,2), and HC7N
data cubes is 0.06K per 0.15 km s−1 velocity channel, with
higher values (∼ 0.1K) near the map edges where fewer
beams overlapped. In general, the noise in the map is con-
sistent, with a 1-σ variation of 0.01 K in the region where
all the KFPA beams overlap.

Filamentary infall

Infall rate
2.5(Nfilλfil)

3/2σ
3
fil

G
→ 400λ3/2

fil M!Myr−1
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length

2λfil
σ2
fil

G
→ 180λfilM!pc

−1

Protocluster
σc = 1.4

(Nfilλfil)1/2

ξ1/3c

σfil

→ 1.3λ1/2ξ−1/3
c km/s



Conclusions & further questions

Clusters inherit their properties from GMCs 
primarily via the accretion history.

Outflows dominate feedback (up to some 
cluster mass)

Feedback and accretion conspire to create a stable 
protocluster. 

What ends cluster formation?     

Why are GMC and cluster formation not 
disky? 


