Powerful Neutral Atomic and Molecular Winds in Galaxies

S. Veilleux (U. Maryland)

Powerful wide-angle outflow in Mrk 231, the nearest quasar

Gemini Press Release

(Rupke & SV 2011, 2013a)

Open Issues (Circa 2005)

(SV, Cecil, Bland-Hawthorn 2005, ARAA)

Theory:

- **1.** Modeling the energy source (including possible AGN)
- **2.** Modeling the host ISM
- **3.** Coupling the radiation field to the gas

Data:

Hot wind fluid

- 2. Entrained molecular gas & dust
- **3.** Zone of influence & escape efficiency
- **4.** Thermalization efficiency
- **5.** Wind/ISM interface & magnetic fields
- **6. Positive feedback**
- 7. Galactic winds in the distant universe

Plan

Recent results on neutral atomic winds
Recent results on molecular winds
Summary & open issues

Neutral Atomic Winds (a) z = 0 - 0.5

Rupke, SV, & Sanders (2002, 2005abc); Rupke & SV (2005); AGN: Krug, Rupke, & SV (2010); Krug, SV et al. (in prep) also Heckman et al. (2000), Martin (2005, 2006), Chen et al. (2010)

Neutral Winds in *z* < **0.5 Star-Forming Galaxies**

(Heckman+00; Rupke+02,05abc; Martin 05,06; Chen+10)

Detection rate:

~50% when $SFR \sim 10$'s M_{sun} yr⁻¹ ~75% when SFR > 100 M_{sun} yr⁻¹

(Rupke, SV, & Sanders 2005a, b)

All have $\Sigma_{SFR} \ge 0.1 M_{sun} yr^{-1} kpc^{-2}$ (Heckman 2002; SV, Cecil, & Bland-Hawthorn 05) $V_{out} \sim SFR^{0.2-0.3}$ (also Σ_{SFR}) *p*-driven winds: ~ $SFR^{0.25}$ (e.g., Murray+05) $V_{out} \sim V_{circ}^{0.8 \pm 0.2}$ (also V_{escape} and M^*) **Inclination dependence at moderate SFR** → collimated outflow (Chen+10) $\eta = (dM/dt) / SFR \sim 0.5 - 5$ ~ σ^{-1} ??? (e.g., Murray+05; Oppenheimer+10) $f_{esc} \sim 5-20\%$ (if no halo drag) → pollute CGM (Steidel+10; Tumlinson+11; Stocke+13)

→ pollute IGM? (e.g., Danforth+14)

These winds have a profound effect on the hosts

 $M_{out} \rightarrow 10^8 - 10^{10} M_{su}$

 $E_{kin} \rightarrow 10^{56} - 10^{57} \text{ ergs}$

(Rupke+05abc)

Fewer and weaker winds in IR-faint Seyferts: Krug, Rupke, & SV (2010)

Extended Neutral (Na I) Outflow in Mrk 231

Extended Neutral Quasar-driven Wind in Mrk 231

(*Rupke & SV 2011* and *2013a*)

- Gemini/IFU: Na I absorption
- > 2-3 kpc from nucleus
- I V_{out} | in excess of 1100 km s⁻¹
- $dM/dt \ge 160 M_{sun} yr^{-1} \sim 1.1 SFR$
- $L_{\text{mech}} = dE_{\text{kin}}/dt \ge 10^{43.6} \text{ ergs s}^{-1} \sim 1.1 \text{ x } dE_*/dt \sim 0.5\% L_{\text{BOL}}$ (AGN)
- $dp / dt \ge 5 L_{SB} / c$ but $\ge 2 L_{IR} / c \rightarrow AGN$ driving

2011 Gemini Press Release

Neutral / Ionized Outflows in ULIRGs

(Rupke & SV 2013a; see also Arribas et al. 2014)

• The outflow velocities increase above $L_{AGN} \sim 10^{11.7} L_{sun}$ (?)

• The AGN becomes the dominant driver of the outflow (?)

Plan

Recent results on neutral atomic winds
Recent results on molecular winds
Summary & open issues

Molecular and Dust Outflows of M82 (circa 2005)

Cold Molecular Gas (~3.6") (CO 1 →0: Walter, Weiß, & Scoville 2002) (also CO 3 →2: Seaquist & Clark 2001) Dust Scattering of UV (*GALEX: Hoopes et al. 2005*)

Dust Outflows of M82

Warm Dust (PAH 8 μm) (Spitzer: Engelbracht et al. 2006) (also Akari PAH 3.3 μm: Yamagishi et al. 2012) Cold Dust (250 μm) (*Herschel: Roussel et al. 2010*)

Warm Extraplanar *Dust* in Galaxies

(Spitzer: McCormick, SV, & Rupke 2013)

Cold *Dust* in Wind Galaxies

(Herschel: Meléndez, SV, et al. 2014; McCormick, SV, et al. 2014 in prep)

Warm Molecular Wind in M82

(SV, Rupke & Swaters 2009)

Influence of shock heating of H₂ in outer region?

Cold vs Warm Molecular Outflows of M82

 $M \sim 3 \ge 10^8 \text{ M}_{\text{sun}}$ $E \sim 1 \ge 10^{55} \text{ ergs}$

 $M < 10^4 M_{sun}$ $E < 1 \times 10^{51} \text{ ergs}?$

Cold Molecular Gas (~3.6") Warm Molecular Gas (~4") (CO 1 → 0: Walter, Weiß, & Scoville '02)

(H₂ 2.12 um: SV, Rupke, & Swaters '09)

Cold Molecular Outflow in Starburst NGC 253

Bolatto, Warren, Leroy, Fabian, SV, Ostriker, et al. (2013, Nature)

¹²CO 1 – 0 (150 – 190 km s⁻¹) Hα

Soft X-rays

- ALMA Cycle 0 Observations
 Resolution: ~ 50 pc (~3")
 V(observed) = 30 60 km s⁻¹
 V(deprojected) = 100 200 km s⁻¹ (*i* = 72°)
 t_{dyn} = 0.3 - 1 Myr
 dM/dt ~ 3 - 9 M_{sun} yr⁻¹
 η = dM/dt / SFR = 1 - 3 (U/CO - 0.1 x Calactia yalua)
 - (H₂/CO ~ 0.1 x Galactic value)

Extended Molecular Quasar-driven Outflow in Mrk 231

(IRAM: Feruglio et al. 2010; Aalto et al. 2012; Cicone et al. 2012)

CO J = 1 - 0:

- V_{out} up to ~750 km s⁻¹
- $\stackrel{\bullet}{\leftarrow} M_{out} \sim 6 \ge 10^8 M_{sun}$ (H₂/CO ~ 0.1 x Galactic value)
- Kpc scale
- $dM/dt \sim 700 M_{sun} \text{ yr}^{-1}$
- *HCN, HCO+, HNC 1-0:*
 - *n* > 10⁴ cm⁻³ clumps;
 compressed, fragmented
 by shocks in outflow?
 - CO J = 2-1 vs 3-2:
 - Blue and red wing material is more compact at higher density

(Na I: Rupke+05c; Rupke & SV 2011, 2013a)

Herschel: Massive Molecular Outflow in Mrk 231

(SHINING Survey: Fischer et al. 2010, A&A, 518, L42)

- OH 79 / 119 um PACS spectra
- P-Cygni profiles!
- Outflow: $|V_{out}|$ in excess of 1000 km s⁻¹

Herschel: Massive Molecular Outflows in ULIRGs

(SHINING Survey: *Sturm, Gonzalez-Alfonso, SV, et al. 2011)* Herschel/PACS spectra of OH 65 / 79 / 119 μm transitions: P-Cygni Profiles

Molecular Wind Kinematics: AGN Driven?

(Sturm, Gonzalez-Alfonso, SV, et al. 2011)

Molecular Wind Dynamics

(Sturm, Gonzalez-Alfonso, SV, et al. 2011)

<u>Radiative transfer models</u>: 1-2 concentric expanding shells

<u>Free parameters</u>: R_{int} , R_{out} , velocity field of each component, covering factor of FIR continuum source (clumpiness f), solid angle of outflow (p_f) <u>Density profile of each shell</u>: derived from mass conservation $(n_{OH} \ge r^2 \ge v)$ is independent of r)

<u>Assumption</u>: OH/H₂ abundance = 5 x 10⁻⁶ (= GMC Sgr B2; Goicoechea & Cernicharo 2002)

Molecular Wind Dynamics in Mrk 231 (Revisited)

=

(Gonzalez-Alfonso et al. 2014)

9 + 1 OH transitions(Herschel + Spitzer)

Parameter	QC	HVC	LVC ^a
$R_{\rm int} (\rm pc)^b$	55-73	65-80	65-80
$T_{\rm dust}$ (K)	95-120	90-105	~90
$ au_{100}$	1-3	1.5 - 2.0	≲1
$R_{\rm out}/R_{\rm int}$	_	≲1.5	~1.5-2
$v_{\rm int}~({\rm kms^{-1}})$	_	1700	~300
$v_{\rm out}~({\rm kms^{-1}})$	_	100	~200
$N_{\rm OH}~(10^{17}~{\rm cm}^{-2})$	5–16 ^c	1.5 - 3	~0.3
$p_{\rm f}/R_{\rm out}{}^d$	1	~0.8	~1
Parameter	QC		HVC

Parameter	QC	HVC
$n_{\rm H} \ (10^4 \ {\rm cm}^{-3})$	$1 - 2^{a}$	$0.04 - 0.3^{b}$
$N_{\rm H} \ (10^{24} \ {\rm cm}^{-2})$	1.3 - 4	0.06-0.12
$M_{ m gas}~(10^8~M_{\odot})$	2.5 - 5.0	0.2 - 0.4
$\dot{M}~(M_{\odot}~{ m yr}^{-1})$	_	500-1200
\dot{P} (10 ³⁶ g cm s ⁻²)	—	$\sim 5 - 7^{c,d}$
$L_{ m mech}~(10^{10}~L_{\odot})$	—	$\sim 6 - 10^{c,d}$
$T_{\rm mech} \ (10^{56} \ {\rm erg})$	-	$\sim 2 - 4^{d}$

OH 119 µm Doublet Profiles (43 objects)

(SV, Meléndez, et al. 2013)

- OH 119 μ m doublet often shows a P Cygni profile \rightarrow outflow
- OH 119 µm doublet is in emission when AGN fraction > 90% (also seen by *Teng*, SV, & Baker 2013 using GBT H I 21-cm feature)
- EW(OH 119 μ m) \leftrightarrow EW(9.7 μ m silicate) ~ obscuration

Kinematics (OH 119 µm)

(SV, Meléndez, et al. 2013)

Velocities

- $< v_{50} > (abs) \sim -200 \text{ km s}^{-1}$
- $< v_{84} > (abs) \sim -500 \text{ km s}^{-1}$
- $< v_{max} > (abs) \sim -925 \text{ km s}^{-1}$
- Similar to neutral gas (Na I)

(Heckman 2000; Rupke, SV, & Sanders 2002, 2005abc; Martin 2005; Rupke & SV 2011, 2013a)

OH 119 µm Wind Detection Rates

(SV, Meléndez, et al. 2013)

- Criterion: v₅₀(abs) < -50 km s⁻¹
- Winds are detected in 70% of the 37 objects with OH 119 μm

→ Wide-angle geometry (~145°)

- This detection rate does not seem to depend on *SFR*, AGN fractions, and *L*_{AGN}
- Infall with $v_{50}(abs) > +50$ km s⁻¹ is detected in only 4 objects
 - Disky or filamentary geometry?

Kinematics (OH 119 µm)

(SV, Meléndez, et al. 2013)

- No significant correlation between the OH velocities and the SFR, stellar velocity dispersions, or stellar masses (over ~1 dex)
- A trend is present with AGN fractions
- A stronger trend is present with AGN luminosities (P[null] = 0.4 - 4%)
 - \rightarrow AGN driving

Dependence on AGN Luminosity

• The AGN becomes the dominant driver of the molecular outflow above

$$L_{\rm AGN}^{\rm break} = 10^{11.8 \pm 0.3} L_{\rm sun} \sim L_{\rm min}({\rm quasar})$$

• Limiting Eddington-like luminosity above which UV-IR radiation momentum deposition from the quasar (and/or starburst) is enough to clear *all* of the gas from the galaxy ("blow away" condition):

$$L_M = \frac{4f_g c}{G} \sigma^4,$$

(Murray et al. 2005)

- For our objects:
 - <u> $-f_g \sim 0.1$ on average</u>
 - $\sigma \sim 120 280 \text{ km s}^{-1}$

 $\Rightarrow L_{AGN}^{break} \sim (2 - 100\%) \bullet L_{M}$

CO Outflows in (U)LIRGs with IRAM

(*Cicone et al. 2014*)

Clear detections of spatially resolved outflows in 4 out of 7 ULIRGs / Quasars

Strong evidence for AGN driving

$$dp/dt \sim (1-30) L_{AGN} / c$$

Consistent with *Herschel* OH results

Probing the Wind Launching Region with H₂ 2.12 μm (used as a tracer of the cold molecular gas) (*Rupke & SV 2013b*)

Buried QSO: F08572+3915 NW

Keck OSIRIS: IFU + AO + Laser Resolution ~ 0.09" ~ 100 pc

Opening angle = $100 \pm 10 \text{ deg}$ (consistent with Sturm+11)

T(wind) = 2400 K > T(disk) = 1500 K

AGN-Driven Molecular Outflows at High *z***?**

QSO RXJ0911.4+0551 (a) z = 2.79 (lensed) 15-hr IRAM SFR = 140 M_{sun} yr⁻¹ V_{out} up to 250 km s⁻¹? $M_{out} \sim 1.7 \times 10^9 M_{sun}$? $E_{kin} > 1 \times 10^{56}$ ergs? $dM/dt > 180 M_{sun}$ yr⁻¹? (assuming $R_{out} \sim 0.5$ kpc ~ Mrk 231, NGC 1266)

AGN-Driven Atomic Outflow at z ~ 6.4 ?

11^h48^m18^s

QSO SDSS J1148+5251 17.5-hr IRAM [C II] PDR V_{out} up to 1300 km s⁻¹ $M(atomic)_{out} > 7 \ge 10^{9} M_{sun}$ (high density, X(C⁺) ~ 1.4 $\ge 10^{-4} \sim$ ionization level of Galactic PDR) $R \sim 8 \text{ kpc}$ $dM/dt > 3500 M_{sun} \text{ yr}^{-1}$ $\tau_{depletion} < 6 \ge 10^{6} \text{ yrs}$ $dE_{k}/dt > 2 \ge 10^{45} \text{ erg s}^{-1}$ $\sim 0.6\% L_{BOL}$ (AGN)

1'' = 5.5 kpc

ALMA: AGN-Driven Atomic Outflows at High z

(Carilli et al. 2013)

- **Group of galaxies BRI 1202-0725** (*a*) z = 4.7
- 25-min "snapshot" (17 antennae, SV phase)
- [C II] PDR outflow in the QSO?
- $V_{\rm out}$ up to 500 km s⁻¹?
- M(atomic)_{out} > 3 x 10⁸ M_{sun} ? (making the same assumptions as in Maiolino+12)
- $R_{\rm out} \sim 10 \; \rm kpc \; ?$
- $dM/dt > 80 M_{sun} yr^{-1}$?

Summary & Open Issues

What are the basic properties of molecular winds?

- Statistics: ~70% of local ULIRGs have molecular winds
- Outflow velocities: $\langle v_{50} \rangle$, $\langle v_{84} \rangle$, $\langle v_{max} \rangle \sim -200$, -500, -925 km s⁻¹
- Energetics: dM/dt up to 1000 M_{sun} yr⁻¹; $L_{mech} = 10^{10} 10^{11}$ erg s⁻¹; $E_{mech} = \text{few x 10}^{56}$ ergs; $dp/dt = (1 - 30) L_{AGN}/c$
- Growing consensus between multi-transition analysis (*Herschel*), spatially resolved CO data (IRAM, ALMA) and ground-based IFU data on the warm-H₂ and neutral gas components (+ JVLA)
- Who is driving these winds: starburst vs AGN?
 - Kinematic trend with L_{AGN} suggests that the AGN is playing a dominant role in local ULIRGs when $L_{AGN}^{break} \ge 10^{11.8 \pm 0.3} L_{sun}$
 - *L*_{AGN}^{break} likely only applies to local gas-rich ULIRGs
- How is this gas driven?
 - Forces: radiation pressure on dust, energy-conserving shocked wind, thermal / jet ram / cosmic ray pressure, ... ?
 - Survival time scale to cloud erosion? In-situ formation?