

KITP, April 2014

The Distribution of Atomic and Molecular Gas in Galaxies

Tony Wong, University of Illinois at Urbana-Champaign wongt@uiuc.edu

with R. Xue (UIUC), K. Yim (Groningen), A. Bolatto (UMD), A. Leroy (NRAO), A. Hughes (MPIA), E. Rosolowsky (Alberta), and many others...

OUTLINE

- Statistics of gas content in galaxies
- Face-on distribution of HI and H₂
- Vertical distribution of HI and H₂
- Comments on star formation relations

MOTIVATION

- Molecular gas (at least in our vicinity) is dense, cold, and closely related to star formation.
- This is *unlike* atomic gas, which is multiphase (CNM/ WNM) under a wide range of conditions.
- Thus non-star-forming HI will tend to be heavily overrepresented when weighting by area or volume.
- Spatially resolved studies critical, but sampling and detection biases can become quite important.
- A star formation "law" can only be formulated once the dense, cold gas component has been isolated.

STATISTICS OF GAS CONTENT IN GALAXIES

GLOBAL GAS CONTENT: HI

- Data from GALEX Arecibo SDSS Survey (GASS); red circles and green triangles are HI detections and non-detections respectively
- HI mass fraction decreases with stellar mass and surface density (surface density seems more important—bulge dominated?)

Catinella+ 2010

GLOBAL GAS CONTENT: H2

- H₂ mass fraction fairly constant once CO is detected.
- However, detection rate of H₂ is a strong function of stellar surface density.

Blue circles: CO detections only

Red circles: CO nondetections given upper limit values

GALAXIES ARE HI-DOMINATED...

- Based on HI and CO flux measurements with single-dish telescopes
- M(H₂) ~ 0.3 x M(HI), with large scatter.
- Blue circles: COLD GASS (Saintonge+ 2011).
- Red squares: HERACLES (Leroy+ 2008).

Saintonge+ 2011

... BUT EARLY TYPES H2 DOMINATED

Young & Knezek 1989

H2 AND STAR FORMATION

- The tendency for high µ* galaxies to prefer molecular over atomic gas does not imply that they experience more star formation.
- These galaxies are displaced below the usual Kennicutt-Schmidt relation between H₂ and star formation.
- Bulge stabilization of disk, or H₂ in more diffuse phase?

THE ISM SURFACE DENSITY DISTRIBUTION

 Early work in the 1980's (typically major axis profiles) showed that the radial CO distribution traces the stellar disk well in the nearest face-on galaxies.

NGC 6946 by Tacconi & Young 1986

- Early work in the 1980's (typically major axis profiles) showed that the radial CO distribution traces the stellar disk well in the nearest face-on galaxies.
- Confirmed by many later studies, most recently by fulldisk CO(2-1) mapping with the IRAM 30m HERA receiver (Leroy+ 2008).

 Radio interferometric studies like BIMA SONG have been key to resolving central CO concentrations ("bulges") as well as depressions ("central holes").

NGC 4736 by Wong & Blitz 2000

 Bars appear to concentrate CO towards the centers of galaxies, leading(?) to formation of low Sersic index "pseudobulges".

• Strong correlation of $R_{mol} = \Sigma_{H_2} / \Sigma_{HI}$ with Σ_*

Leroy+ 2008, HERACLES

• Strong correlation of $R_{mol} = \Sigma_{H_2} / \Sigma_{HI}$ with Σ_* : hydrostatic pressure?

Correlation with pressure not as good!

Leroy+ 2008, HERACLES

HITOH2 TRANSITION

 A clue to the origin of the R_{mol} – Σ* correlation comes from pixel by pixel comparison of CO, HI, and 3.6 µm maps for 18 galaxies in the CARMA STING project (R. Xue, PhD thesis).

CARMASTING [CO]

∆ Dec. (arcmin)

CARMA STING [HI]

Xue et al., in prep.

HITOH2 TRANSITION

 In the regime where CO is detected, Σ_{HI} is confined to a narrow range of values that is metallicity dependent, as predicted by selfshielding models (Krumholz+ 2009).

HITOH2 TRANSITION

- Σ_{H_2} on the other hand correlates strongly with Σ_* .
- Suggests that H₂ supply is "regulated" by the stellar disk.
- Remember that only CO-detected galaxies are considered here.

SPIRALS ONLY?

Wong+ 2009

Fukui+ 2008

THE VERTICAL ISM DISTRIBUTION

WHY STUDY GAS THICKNESS?

 Possibility that gas volume density is more important than surface density for star formation

$$\dot{\rho}_* = f_{\mathrm{H}_2} \epsilon_{\mathrm{ff}} \frac{\rho}{t_{\mathrm{ff}}} = f_{\mathrm{H}_2} \epsilon_{\mathrm{ff}} \sqrt{\frac{32G\rho^3}{3\pi}},$$

Krumholz, Dekel & **McKee 2012**

Midplane hydrostatic pressure depends on vertical distributions of the gas and stars

$$P_{\text{ext}} = 0.84 (G\Sigma_{\star})^{0.5} \Sigma_g \frac{v_g}{(h_{\star})^{0.5}}$$

Blitz & Rosolowsky 2006

2013

Ostriker+ 2010

 $P_{\rm mp} \approx \frac{\pi}{2} G \Sigma_{\rm HI}^2 + \pi G \Sigma_{\rm HI} \Sigma_{\rm H_2} + 2\pi \zeta_d G \frac{\rho_{\rm sd}}{\rho_{\rm mp}} \Sigma_{\rm HI}^2 \quad \text{via Krumholz}$ 2013

EDGE-ONS: HIDATA

Typical resolution: 15" (750 pc)

EDGE-ONS: CO DATA

BIMA, CARMA

Typical resolution: 3" (150 pc)

DISK FLARING

- CO disk flaring modest, needs confirmation in most cases
- HI disk flaring more prominent (change in CNM/WNM mix?)

Yim+ 2014 submitted

DISK FLARING

Stellar disk flaring also seen in Spitzer $3.6 \ \mu m$ imaging, contrary to usual expectation of a constant scale height.

H2/HIAND PRESSURE

 How do different pressure estimates relate to the atomic-molecular balance?

H2/HIAND PRESSURE

• How do different pressure estimates relate to the atomic-molecular balance?

THINKING ABOUT STAR FORMATION RELATIONS

BEWARE RICHNESS EFFECTS

- Although normalized by area, Σ is still essentially a mass measurement.
- Inner parts of galaxies will have more of everything!

DON'T INCLUDE THE HI

• When Leroy et al. removed the richness effect by normalizing the SFR by the gas mass, the residual correlation with gas was virtually non-existent.

BEWARE NON-DETECTIONS

 Even "molecular" SF law shows large scatter

 Groups get discrepant results working on the same data!

 Green line: discard upper limits, slope=1.9

Blanc+ 2009

SUMMARY

- Observationally, H₂ in CO-bright spirals is strongly coupled to stellar surface density, leading to in-plane CO distributions very distinct from HI.
- On the other hand, the H₂ disk is much thinner than the stellar disk, suggesting any coupling may be indirect (e.g. related to disk dynamics).
- Midplane gas pressure is a strong contender for underlying this coupling, but R_{mol} correlates more poorly with it than with Σ_* alone.

$$P_0 = \frac{1}{2} \Sigma_g \sigma_g \left[\pi G \left(\frac{\Sigma_g}{\sigma_g} + \frac{\Sigma_*}{\sigma_*} \right) \right]$$

vertical oscillation freq ~ Ω/Q_{eff}