

Radboud University Nijmegen, the Netherlands

University of Leuven, Belgium

Conny Aerts

"massive" star research

A data-driven outlook

for the future of

KU LEUVEN

Radboud Universiteit Nijmegen

astrophysics & back to basics... high-precision time-domain Let the data guide the theory:

(very biased selection!) Some questions raised this week

My favourite HRD....

global surface and wind **HRD** considers properties

Stellar *interior* = probed by stellar oscillations

Variability in upper HRL

is prominent, diverse and

has various causes

and cannot be ignored Binarity is common

LOG EFFECTIVE TEMPERATURE (K)

Detected gravity-mode oscillations in B stars

The boost thanks to space photometry

astrophysics high-precision time-domain Let the data guide the theory:

uncertainties in micro-physics such as macro-physics as of ZAMS versus What is more important: unknowns in nuclear reaction rates in pre-SN?

Gravity-mode period spacings in B stars

KU LEUVEN

Level & shape of core overshoot dominate

vsini=62 km/s; Pápics et al. (2015) & Moravveji et al. (2016) ω

Core overshoot & core mass tuning

Radboud Universiteit Nijmegen

Core overshoot & core mass tuning

Radboud Universiteit Nijmegen

astrophysics high-precision time-domain Let the data guide the theory:

Can we use a more realistic mixing profile?

astrophysics high-precision time-domain Let the data guide the theory:

Can we use a more realistic mixing profile?

Dips in ΔP give level of chemical mixing

astrophysics high-precision time-domain Let the data guide the theory:

What is the core to envelope rotation for the more "usual" cases in the massive star context?

(not only ultra-slow rotators...)

Radboud Universiteit Nijmegen

Interior versus surface rotation F stars

Radboud Universiteit Nijmegen

16

astrophysics for supergiants? how about time-domain Let the data guide the theory:

Gravity waves in O9lab supergiant HD 188209

Radboud Universiteit Nijmegen

Gravity waves in O9lab supergiant HD 188209

Radboud Universiteit Nijmegen

۲

Line-profile variability in upper HRD

Símon Díaz et al. (2016): years of spectroscopic monitoring of 100s of **OB** stars shows Heroic efforts by large diversity

time-dependent & tangential WARNING for misconception multiple gravity waves are of macroturbulence:

20

or RT Gaussian!

Line profile broadening is not Gaussian...

Radboud Universiteit Nijmegen

2

_ine profiles due to waves are not Gaussian

Radboud Universiteit Nijmegen

۲

astrophysics of binaries high-precision time-domain Let the data guide the theory:

Radboud Universiteit Nijmegen

NS

Tidal asteroseismology: only starting now

Relative Flux

1.0030

Hambleton et al. (2017):
7 tidally excited modes;
apsidal advance after
4 years requires 3rd body

Numerous additional cases from Kepler mission, all intermediate-mass stars

astrophysics high-precision time-domain Let the data guide the theory:

How about massive binary asteroseismology?

$L_1/L_{ m tot}$	$v_{\rm eq,1}\sin i({\rm kms^{-1}}$	$\log_{10}g_2$ (cgs)	$\log_{10} g_1 (\text{cgs})$	$T_{\rm eff,2}$ (K)	$T_{\rm eff,1}$ (K)	T_0 (HJD)	$\gamma (\mathrm{kms^{-1}})$	Ω (°)	е	$K_1 ({\rm kms^{-1}})$	<i>P</i> (d)	Fr	Parameter	
0.75	30	4.0	3.7	33 000	36000	2 454 538	39.0	172.1	0.59	27.7	829	om spectroscopy	Value	
I	10	0.15	0.1	1500	1000	S	0.3	1.5	0.02	0.4	4		Uncertainty	

KC	
Ş	

CoRoT pulsating O8V primary HD 46149

Radboud Universiteit Nijmegen

28

Degroote et al. (2010): detection of solar-like oscillations

need better spectroscopic orbital coverage

BRITE: pulsating O star in iota Ori

Pablo et al. (2017): 7 significant frequencies, some tidally excited quadrupole modes

KU LEUVEN

K2: pulsating O+B EB HD165246

Radboud Universiteit Nijmegen

۲

<u>30</u>

frequency; follow-up in spectroscopy to unravel cause

astrophysics high-precision time-domain Let the data guide the theory:

of core overshoot, mixing, interior rotation? high-precision binary & seismic modelling how high can we go in mass for Great opportunities coming up:

Near future: TESS-CVZ + Gaia + AS4

Radboud Universiteit Nijmegen

Farther future potential: PLATO mission

PLATO main mission & PLATO-CS with targets of choice https://fys.kuleuven.be/ster/Projects/plato-cs/ **Beyond 2025:**

