Asteroseismic Windows into Stellar Cores Jim Fuller

Caltech/KITP

Stellar evolution and Kepler Asteroseismology

Stellar Structure

Red Giant

Intermediate-mass Star

Radiative

Convective

Low-mass Star

Convective

Radiative

M < 1.2 Msun

M > 1.2 Msun

Convective

Radiative

Asteroseismology Basics

Fourier Transform

l=1 dipole modes

Chaplin & Miglio 2013

Asteroseismology basics, continued

Oscillations excited by convection, with frequency near :

$$v_{\rm max} \propto v_{\rm ac} \propto rac{c}{H} \propto g T_{\rm eff}^{-1/2}$$

Oscillations separated by dynamical frequency of star:

$$\Delta v = \left(2\int_0^R \frac{\mathrm{d}r}{c}\right)^{-1} \sim \sqrt{G\rho}$$

Combine to determine mass and radius via scaling relations (e.g., Brown et al. 1991, Huber et al. 2011)

See poster by Meredith Rawls

4/2/2017

Chaplin & Miglio 2013

Wave Propagation in the Red Giants

- Acoustic waves propagate where $\omega > N$, $\omega > L_{I}$ $k_r \simeq$ v_s
- Gravity waves propagate where $\omega < N$, $\omega < L_1$

$$k_r \simeq \frac{\ell N}{\omega r}$$

Determining Evolutionary Status

Charting Stellar Populations

Mosser et al. 2014

Internal Rotation and Angular Momentum Transport

Measuring Core Spin from Rotational Splitting

Mosser et al. 2012

Beck et al. 2012

Growth of Differential Rotation

Deheuvels et al. 2014

See Tayar & Pinsonneault 2013, Spada et al. 2016

Core Spin-Down

Mosser et al. 2012

Rotation Profiles

Tentative evidence that differential rotation occurs near hydrogen burning shell (Di Mauro et al. 2016, Klion et al. 2016)

Di Mauro et al. 2016

Cores rotate too slowly

Core rotation cannot be explained by non-magnetic angular momentum transport mechanisms

Taylor-Spruit Dynamo gets closer but still falls short

Possible explanations

- Fossil fields?
- MRI or other magnetic instability?
- Observational bias? (Tayar et al. 2015)

Cantiello et al. 2014

Efficient Angular Momentum Transport

Little evidence for "large" amounts of differential rotation in main sequence stars

Kurtz et al. 2014, Saio et al. 2015, Nielsen et al. 2014, Benomar et al. 2015, Van Reeth et al. 2016

JIM FUL

Internal Mixing and Convective Overshoot

Moravveji et al. 2016

4/2/2017

JIM FULLER

Moravveji et al. 2015

Moravveji et al. 2016

Convective Overshoot In He-burning Stars

- Evidence for large convective cores in both red giants and sdB stars
- May indicate large amounts of convective overshoot (Bossini et al. 2015, Constantino et al. 2015, Van Grootel et al. 2010a,2010b, Charpinet et al. 2011b, Schindler et al. 2015)

Constantino et al. 2015

Few robust results for massive stars

	HD number	vsini	$f_{\rm rot}$	$\log T_{\rm eff}$	$\log q$	α_{ov}	Mas	
		$(\mathrm{kms^{-1}})$	(d^{-1})	(K)	(dex)	$(H_{\rm p})$	$(M_{\odot}$	
	16582	1	0.075	4.327	3.80	0.20 ± 0.05	10.2	
	29248	6	0.017	4.342	3.85	< 0.12	9.5	
	44743	23	0.054	4.380	3.50	0.20 ± 0.05	13.6	
	46202	25		4.525	4.10	0.10 ± 0.05	24.0	
	129929	2	0.012	4.389	3.95	0.10 ± 0.05	9.4	
	163472	63	0.275	4.352	3.95	$<\!0.15$	8.9	
	180642	25	0.075	4.389	3.45	$<\!0.05$	11.6	
	214993	36	0.120	4.389	3.65	$<\!0.40$	12.2	
	50230	7	0.044	4.255	3.80	0.25 ± 0.05	7.5	
	74560	13	0.010	4.210	4.15	< 0.10		
	157056	31	0.107	4.398	4.10	0.44 ± 0.07	8.2	
(1) Aerts et al. (2006); (2) Pamyatnykh et al. (2004); (3) Mazum								
Briquet et al. (2011); (5) Dupret et al. (2004); (6) Briquet et al. (
(2011); (8) Desmet et al. (2009); (9) Degroote et al. (2010); (10)								
	(11) Briquet et al. (2007).							

Aerts 2013

Magnetic!

Internal Magnetic Fields

Matteo Cantiello & Dennis Stello Daniel Lecoanet, Lars Bildsten, Rafael Garcia

A mystery arises...

A class of red giants with extremely low amplitude, "suppressed" dipole modes

Mosser et al. 2011

The plot thickens...

- The dipole suppressed stars are common, occurring in ~20% of red giants
- The visibility of dipole modes depends on the evolutionary state of the star

An idea develops...

•Wave energy leaks into core at rate

$$\dot{E}_{\text{leak}} = E_{\text{ac}} \frac{T^2}{2t_{\text{cross}}}$$

 Ratio of suppressed mode to nonsuppressed mode is

$$\frac{V_{\sup}^{2}}{V_{\alpha}^{2}} = \begin{bmatrix} 1 + \Delta \nu \tau_{ac} T^{2} \end{bmatrix}^{-1}$$
4/2/2017
Radial mode lifetime

JIM FULLER

p-modes

A (partial) solution emerges...

Mode amplitudes can be explained by wave energy leakage into the core

$$\frac{V_{\rm sup}^2}{V_{\alpha}^2} = \left[1 + \Delta \nu \tau_{\rm ac} T^2\right]^{-1}$$

A (partial) solution emerges...

Mode amplitudes can be explained by wave energy leakage into the core

$$2.0$$

 1.5
 1.0
 0.5
 0.0
 50
 100

$$\frac{V_{\rm sup}^2}{V_{\alpha}^2} = \left[1 + \Delta \nu \tau_{\rm ac} T^2\right]^{-1}$$

What causes wave dissipation in core?

Magnetic Fields

Fuller & Cantiello + 2015

Magnetic Forces

In the presence of strong B-fields, magnetic tension forces can become comparable to buoyancy

Modified dispersion relation for magneto-gravity waves

$$k^{2} = \frac{\omega^{2}}{2v_{A}^{2}\mu^{2}} \left[1 \pm \sqrt{1 - \frac{4\mu^{2}v_{A}^{2}N^{2}k_{\perp}^{2}}{\omega^{4}}} \right]$$

Equate tension force with buoyancy Force

$$B_c = \sqrt{\frac{\pi\rho}{2}} \, \frac{\omega^2 r}{N}$$

Occurs when Alfven speed ~ gravity wave group velocity

Rogers & MacGregor 2010,2011

Minimum magnetic field for magnetic greenhouse effect to operate

JIM FULLER

Fuller & Cantiello + 2015

Cantiello & Fuller + 2016

Magnetic Greenhouse Effect \rightarrow Magnetic Mirror Effect

•Waves excited by turbulent convection near stellar surface, travel inward, and tunnel into radiative core

Ingoing waves reflect off regions of high field strength

•Magnetic mirror converts gravity waves into Alfven waves (Lecoanet et al. 2016)

Alfven waves dissipate in regions with small magnetic fields

Incidence of core fields is mass-dependent

Stello, Cantiello, Fuller+, 2016

Evidence for convective core dynamos

•Strong fields in red giants are "skeleton" fields which are remnants of main sequence dynamos

Mixed modes in stars with suppressed dipole modes may indicate another mechanism is at work (see Mosser et al. 2017)

Mosser et al. 2017

Conclusions

Asteroseismology indicates:

- •Mixing is efficient
 - Schwarzschild criterion + overshoot matches observations best
 - Overshoot f_{ov} ~0.02 should be used in massive star evolution

•Angular momentum transport is efficient

- Magnetic and/or wave transport likely required
- Massive star cores rotate slower than predicted by past models

Strong internal magnetic fields may be common

- Internal dynamo-generated fields may persist to later phases
- Neutron star magnetic fields may be inherited from progenitor

Thanks!

Bonus Material!

Wave Propagation in the Sun

- Acoustic waves propagate where $\omega > N$, $\omega > L_{I}$ $k_r \simeq$ v_s
- Gravity waves propagate ightarrowwhere $\omega < N$, $\omega < L_1$

$$k_r \simeq \frac{\ell N}{\omega r}$$

The Mixed Mode Forest

• Mixed modes have constant period spacing determined by core properties

Vrard et al. 2016

$$\frac{2\pi^2}{(l+1)} \left(\int_{r_1}^{r_2} N \frac{\mathrm{d}r}{r} \right)^{-1}$$

Magnetic Wave Conversion

JIM FULLER

 Downward propagating gravity waves have positive wave number

 Wavenumber does not go through zero at critical point, i.e., waves do not reflect

 Waves refract into upgoing Alfvenic waves

Lecoanet, Vasil, Fuller+ 2016

Fate of Magnetic Waves

 Alfven waves increase wavenumber as they propagate outwards into region with weak field

 For non-uniform magnetic field, waves reach 'Alfven cut-off height' where wavenumber diverges

 Waves likely damp deep within star

Lecoanet, Vasil, Fuller+ 2016

JIM FULLER

1.00 damping

∾ 0.50

turning point 0.25

damping 0.00

Magnetic Tension Forces

 Critical field strength for magnetic tension to dominate buoyancy as wave restoring force

$$B_c = \sqrt{\frac{\pi\rho}{2}} \, \frac{\omega^2 r}{N}$$

• Gravity waves cannot propagate below cutoff frequency

$$\omega_{\rm MG} = \left[\frac{2}{\pi} \frac{B_r^2 N^2}{\rho r^2}\right]^{1/4}$$

Magnetic field topology may be complex

Stable magnetic configurations of interlocked lacksquarepoloidal+toroidal fields exist in radiative regions

Convective core dynamos on the MS: B_{eq}~10⁵ G

Flux conservation leads to B~10⁷ G on the RGB

Braithwaite & Nordlund 2006

Kyle Augustson

Measurement of magnetic field in Droopy

Garcia et al. 2014

•Modes above cutoff frequency not suppressed:

$$\omega_{\rm MG} = \left[\frac{2}{\pi} \frac{B_r^2 N^2}{\rho r^2}\right]^{1/4}$$

•Measurement of cutoff frequency yields B-field at H-burning shell: $B_c =$

4/2/2017

JIM FULLER

 $\frac{\sqrt{\pi\rho}}{2} \frac{\omega^2 r}{N}$

G

Magnetic fields in thousands of stars

 No evidence of point at which magnetic greenhouse effect "turns on"

•No evidence of maximum attainable field strength

JIM FULLER

Stello, Cantiello, Fuller + 2016,

ΰ

5 ggo

Predictions

- Quadrupole modes mildly suppressed
- Magnetic He-burning stars should be detectable
 - Does He flash wipe out strong fields?
- Surface rotation rates need not be fast

Stello, Cantiello, Fuller + 2016

 Surface magnetic fields need not be strong

4/2/2017

A (partial) solution emerges...

•Mode amplitudes can be explained by wave energy leakage into the core

Wave Dispersion Relations

Acoustic waves:

$$\omega = c_s k_r$$
Gravity Waves

$$k_r^2 \approx \ell (\ell+1) N^2 / r^2 \omega^2$$

Magneto-gravity Waves:

$$k^2 = rac{\omega^2}{2 v_A^2 \mu^2} igg[1 \pm \sqrt{1 - rac{4 \mu^2 v_A^2 N^2 k_\perp^2}{\omega^4}} igg]$$

Alfven Waves:

$$k^2=rac{\omega^2}{\mu^2 v_A^2}$$

Dipole mode suppression somewhat common in red giants

Role of Joule Heating

$$\Gamma_B = \frac{\eta B^2 k_r^4}{(4\pi)^2 \rho \omega^2}$$

$$\frac{\Gamma_B}{\Gamma_r} = \frac{\eta}{\kappa} \frac{B^2 k_r^2}{(4\pi)^2 \rho \omega^2} = \frac{\eta}{\kappa} \frac{l(l+1)}{(4\pi)^2 \rho}$$

$$\frac{\Gamma_B}{\Gamma_r} = \frac{1}{16\pi} \frac{\eta}{\kappa} \quad <<|$$

 $B^2 N^2$ $\rho r^2 \omega^4$

Additional Prospects

•Galactic archaeology

 Combine measurements of mass and radius to infer distance and age

Characterizing planets

Fun with binaries

K2, TESS, Plato → tens of thousands of stars

4/2/2017

