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Common envelope mass transfer

Paczynski (1971)



March 20, 2017 KITP Massive Stars 2017 4

Common envelope mass transfer

Taam & Ricker (2010)
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Energy formalism (van den Heuvel, Webbink, de Kool, ...)

Orbital energy used to eject envelope (efficiency ®)

Parametrized envelope binding energy (¸ parameter)

Problems

® and ¸ are not constants!

Core/envelope split

Systems requiring ® ≫ 1

Ivanova et al. (2013)
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Achieving envelope ejection

Basic 3D simulation results

Spiral shocks drive ejection

Dynamical plunge followed by 
slow inspiral

Outstanding problems

Insufficient inspiral

Failure to achieve full envelope 
ejection

Initial conditions issues

Physics/parameter coverage

Ricker & Taam (2012)

Passy et al. (2012)

Terman et al. (1994, 1995, 1996); Rasio 
& Livio (1996); Sandquist et al. (1998, 
2000); Ricker & Taam (2008, 2012); 
Passy et al. (2012); Nandez et al. (2015, 
2016); Ohlmann et al. (2016); Iaconi et 
al. (2017)



March 20, 2017 KITP Massive Stars 2017 7
Ohlmann et al. (2016)

Achieving envelope ejection

Basic 3D simulation results

Spiral shocks drive ejection

Dynamical plunge followed by 
slow inspiral

Outstanding problems

Insufficient inspiral

Failure to achieve full envelope 
ejection

Initial conditions issues

Physics/parameter coverage

Ricker & Taam (2012)

Terman et al. (1994, 1995, 1996); Rasio 
& Livio (1996); Sandquist et al. (1998, 
2000); Ricker & Taam (2008, 2012); 
Passy et al. (2012); Nandez et al. (2015, 
2016); Ohlmann et al. (2016); Iaconi et 
al. (2017)
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Final separation

Observed post-CE 
systems

Simulations

Iaconi et al. (2017)
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Additional energy sources/sinks

(+) H/He recombination

(+) Core expansion

(+) Nuclear

(+) Accretion

(–) Terminal kinetic energy

(–) Radiation
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Additional energy sources/sinks

(+) H/He recombination

(+) Core expansion

(+) Nuclear

(+) Accretion

(–) Terminal kinetic energy

(–) Radiation

Nandez et al. (2015)

base of 
convective 
envelope

H-depleted 
core

pot + int

pot + int + rec

Ivanova et al. (2015)
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(+) H/He recombination

(+) Core expansion

(+) Nuclear

(+) Accretion

(–) Terminal kinetic energy

(–) Radiation

Additional energy sources/sinks

Kruckow et al. (2016)

Available recombination 
energy depends on core 
boundary definition but 
not metallicity

Available recombination 
energy depends on core 
boundary definition but 
not metallicity
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Envelope ejection timescale

Too slow → star readjustsToo slow → star readjusts

Ivanova et al. (2015)

Link between ejection timescale and energy sources that can be tapped
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GW150914

Abbott et al. (2016)
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CE channel for BHBH mergers

Belczynski et al. (2016)

Second mass transfer phase is CE 
with core helium burning donor

Require Z < 0.1Z⊙ to avoid 

excessive mass loss

Assumptions to be tested in 3D

Stability of each phase?

Efficiency of each phase?

Final core mass and separation?
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Massive star CE

Donor binding energy vs. radius 
sets minimum companion mass 
needed to eject envelope

Easiest near maximum expansion

35M⊙ companion easily enough 

for 80+M⊙ donor

Must also avoid merger due to GW 
emission before 2nd supernova

Depends on core/envelope split  

Kruckow et al. (2016)
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Massive star CE simulation (PR, Taam, Timmes)

Evolve 1D 88M⊙, 

Z=Z⊙/50 model from 

ZAMS to tip of RGB 
with MESA (Paxton et al. 
2015)

Relax in 3D binary 
potential with 35M⊙ 

companion using SPH 
code StarCrash (Faber & 
Rasio 2002)

Map SPH particles into 
FLASH AMR simulation 
with partial-ionization 
Timmes EOS
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Massive star CE simulation (PR, Taam, Timmes)

Flattened-density 
model

Low-resolution case: 
5123 potential mesh, 
105 SPH particles

Star mass 82.1M⊙

Core mass 62.7M⊙

Run for 3.5t
dyn

 
(127,000+ steps)

Stampede: 1024 
cores, 24 hours
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Massive star CE simulation (PR, Taam, Timmes)
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Massive star CE simulation (PR, Taam, Timmes)

Run →
Quantity ↴

X=0.1 core Low-res core

M
core

/M⊙ 53.4 62.7

R
core

/R⊙ 1.41 16.8

Effective grid (17,200R⊙ box) 12,200 1,024

t
dyn,core

 (sec) 230 8700

Timesteps (10 orbits w/35M⊙ BH at 6366R⊙) 2.0 x 106 54,000
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Summary

Common envelope stage important for close binary formation and 
compact object mergers

3D simulations require additional energy sources to eject envelope

Major outstanding questions

Envelope ejection criterion and efficiency

Core-envelope boundary

Energy sources and timescales

Massive star uncertainties

Mass loss and envelope structure
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