

Outcomes of Massive Star Mergers

Fabian R. N. Schneider
Hintze Research Fellow
KITP Massive Star Conference

Massive Star Mergers

 Sana et al. (2012, Science): >70% of all O stars interact with a binary companion during their life

Credit: S.E. de Mink

Merger Fingerprints

- Pre main-sequence merger (e.g. tidal interaction with circumbinary disk; Stahler 2010, Korntreff+2012)
 - No observable signatures expected (maybe ejecta?)
- Main-sequence merger (e.g. binary stars, cluster dynamics)
 - Ejecta/nebula (short lifetime, low chance to observe)
 - Rapid rotation? Slow rotation?
 - Surface chemical enrichment: Nitrogen, Helium?
 - Rejuvenation!
- Post main-sequence merger (e.g. Case B merger or from common-envelope evolution)
 - Maybe similar to main-sequence mergers

Rejuvenation of main-sequence mergers

The merger product will look younger than its progenitors.

Rejuvenation of main-sequence mergers

Schneider et al. (2016)

Rejuvenation of main-sequence mergers

Comparison clocks: cluster members

Comparison clocks needed to find rejuvenated stars

Two problems

Cluster age problem

Arches: (Martins et al. 2008)

WNh stars: 2-3 Myr

O stars: 3-4 Myr

Quintuplet:

(Liermann et al. 2012, Figer et al. 1998)

- WNh stars: 2.1-3.6 Myr
- Pistol star: <2.1 Myr
- O/WC stars: ~4 Myr

Brightest stars appear to be younger

Maximum mass problem

 $M_{max} \approx 150 M_{\odot}$ (Weidner&Kroupa 2004, Figer 2005, Oey&Clarke 2005, Koen 2006)

BUT:

- $160\text{-}320~\text{M}_{\odot}$ stars in R136 (Crowther et al. 2010)
- Further >150 M_☉ stars in
 30 Dor (Bestenlehner+2014)
- SN2007bi: PISN from initial 250 Msun star?! (Gal-Yam et al. 2009)

Present-day mass functions: single stars

IMF = distribution of stellar masses at birth; ξ(M) ~ M^Γ

Present-day mass functions: binary stars

Mass transfer, stellar mergers and rejuvenation create a tail

Schneider et al. (2014, 2015)

Comparison with observations

Arches mass function from Stolte et al. (2005)

- Bump and tail explained by our models
- The most massive stars are rejuvenated binary products
 - Age: 3.5±0.7 Myr

→ Resolves cluster age problem

Schneider et al. (2014)

The maximum mass problem

- What truncated the mass function of Arches?
- Figer (2005): upper mass limit of 150 M_☉
- Schneider et al.
 (2014): finite
 stellar lifetimes

→ Resolves maximum mass problem

The stellar upper mass limit

- Arches likely too old to determine M_{max}
- Most massive stars likely binary products

Consider R136:

- Probably all stars alive (de Koter et al. 1998, Massey & Hunter 1998, Crowther et al. 2010, 2016)
- Still, the most massive stars may be binary products!

The stellar upper mass limit from R136

• Which M_{max} needed to form the observed 150-320 M_{\odot} stars?

$M_{ m up}/{ m M}_{\odot}$	Single stars	Binary stars
150	×	× P _{≥280} = 0%
200	×	P _{≥280} = 20%
300		P _{≥300} = 70%
400	P ≥350 = 63%	P _{≥400} = 41%
500	P _{≥400} = 70%	× P _{≥500} = 33%
>500	× P _{≥400} > 70%	×

 M_{max} likely in range 200-500 $M_{\odot} \rightarrow$ PISNe!

Strong magnetic fields in massive stars

Few close, magnetic binaries known; only 1 with two magnetic stars (Shultz et al. 2015)

≈10% of MS and pre-MS
massive stars; no
correlation with rotation
(Donati & Landstreet 2009,
Ferrario et al. 2015, MiMeS, BOB;
Kochukhov & Bagnulo 2006)

Record holder: Babcock's star (A0) with B_p≈34 kG

Dearth in close binaries:

established in Ap stars, now confirmed in OB stars, too (BinaMIcS: Neiner&Alecian 2013, Alecian+2015, Neiner+2015; see also Carrier+2002)

Origin of magnetic fields in massive stars

Merger hypothesis – a *handwavy* explanation

 B-field amplification: differential rotation and, e.g., MRI (Ferrario+2009; Langer 2012; Wickramasinghe+2014, Schneider+2016)

 Wind-up existing seed field (differential rotation)

 Re-generate poloidal comp. (turbulence, e.g. MRI)

3. Continue with step 1. for B-field **amplification**

Credit: Martin Pugh & Rick Stevenson (NGC 6188 and NGC 6164)

HR 2949

- HR 2948 (4 M_☉) and HR 2949 (6 M_☉) visual pair of B-stars, 7.3 arcsec separated on sky (distance ~139 pc [van Leeuwen+2007])
 → orbital separation > 2x10⁵ R_☉ (wide binary if grav. bound)
- HR 2949 more massive and magnetic, B_p=2.4kG (Shultz+2015)
- Scenario: initial triple star system

 Take stellar parameters of Shultz+2015 and derive apparent ages for both stars using Bayesian code BONNSAI (Schneider+2014)

τ Sco

- 16 M_☉; member of Upper Scorpius association;
 Upper Sco: about 11 Myr old (Pecaut et al. 2012)
- Complex magnetic field, 500 G (Donati et al. 2006)

- τ Sco considered spectral standard
 → many people derived stellar parameters
- We use parameters of
 - M05: Mokiem+2005
 - **SD06**: Simon-Diaz+2006
 - NP14: Nieva & Przybilla 2014
- and derive apparent ages for τ Sco using the Bayesian code BONNSAI (Schneider+2014)

τ Sco

SUMMARY

Credit: ESO/L. Calçada

Summary

- ~25% of all massive stars merge with companion
- Identify main-sequence merger products by rejuvenation
 - > requires comparison clocks
- The most massive stars in clusters likely merger or other binary mass-transfer products
 - massive counterpart of classical blue stragglers
 - Binary products form mass-function tail
 - Affects inference of stellar upper mass limit
 - → Re-determination: M_{max} ≈ 200-500 M_☉
- Origin of strong magnetic fields in massive stars
 - HR 2949 and τ Sco apparently too young and age discrepancies compatible with merger scenario
 - Powerful new method to pin-down origin of B-fields

Thank you for your attention!

