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What makes young
star clusters round?
How do orbits affect
radiation exposure?



Density profile implied by Larson’s Law:

oP
LNALIVE B
o yox—=pol/

P = Bo where §=rlr.

E(1+8)




What Is the total
mass of a galaxy?
Why do dark matter
halos have a nearly
universal form?



(M. Busha
et al. 2003)
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Dark matter halos approach

a well-defined asymptotic form

with unambiguous total mass,
outer radius, density profile




WHY THESE
Most of thg)rﬁggs Ii;riﬁdgrk maltter

Most dark matter resides In these
halos

Halos have the universal form found
here for most of their lives

Most orbital motion that ﬁ&grvgaoﬂ)
occur-will-be . THIS orbital' motion



Spherical Limit:
Orbits look like Spirographs




Orbits in Spherical Potential
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These results determine the radiation
exposure of a star, averaged over its orbit,
as a function of energy, where the result Is
nearly independent of angular momentum:
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Spirograph Pattern (Epicycloid)
given by circle turning on a circle:

a = radius of big circle

p = radius of small circle

: : y = length of drawing radius
Epicycloids are

NOT epicycles...



Spirographic S —
Orbital Elements TN
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Basic Spirographic Results
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Conservation of Energy gives transformation
between physical time and parametric time:
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Triaxial Density Distributions

Relevant density profiles include NFW and Hernquist
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Isodensity surfaces in triaxial geometry
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In the inner limit both profiles scale as 1/r

1

m<<1 :> p x—

m




Triaxial Potential
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In the inner limit the above integral can be simplified to
O=-] +1,

where 1, is the depth of the potential well and
the effective potential is given by
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g, A,F are polynomial functions of X,V,Z, Cl,b,C



Triaxial Forces
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Orbit Gallery
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INSTABILITIES

Orbits in any of the principal
planes are unstable to motion
perpendicular to the plane.

Unstable motion shows:

(1) exponential growth,

(2) quasi-periodicity,

(3) chaotic variations, &
(4) eventual saturation.
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Perpendicular Perturbations

Force equations in limit of small x, y, or z become
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Equations of motion perpendicular to plane have the
form of Hill's equation
Displacements perpendicular to the plane are unstable



‘

d%/
4/b

dt? +\/
2
cix’ + a’
a’z’ +
bez
+ 77




Floguet’s Theorem

For standard Hill’s equations (including Mathieu equation)
the condition for instability is given by Floquet’s Theorem
(e.g., Arfken & Weber 2005; Abramowitz & Stegun 1970):

|Al =2 required for instability

where A=y () +dy,/dt(mw)

Need analogous condition(s) for the
case of stochastic Hill’s equation...



CONSTRUCTION OF DISCRETE MAP

To match solutions from cycle to cycle, the coefficients
are mapped via the 2x2 matrix:

a,| [h (*-Digle,
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where h =y (), g=dy,/dt()

and where y (1) = o, y, (1) + Y, (?)

to matrix products:
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GROWTH RATES

The growth rates for the matrix products can be
broken down into two separate components, the
asymptotic growth rate and the anomalous rate:
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[where individual growth rates given by Floguet’s Theorem]
Next: take the limit of large g, i.e., unstable limit: A >>1
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Anomalous Growth Rate as function of
the variance of the composite variable
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Basic Theorems

Theorem 1: Generalized Hill’s equation that is non-periodic
can be transformed to the periodic case with rescaling of the

parameters: t—=uwt, A, —A/u,q —q.lu

Theorem 2: Gives anomalous growth rate for unstable limit:
N
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Theorem 3: Anomalous growth rate bounded by:A), < 9o
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Theorem4:Gives anomalous growth rate for unstable limit
for forcingfunction having both positive and negative signs:
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(Adams & Bloch 2007)



Astrophysical Applications

Dark Matter Halos: Radial orbits are unstable to
perpendicular perturbations and will develop more
Isotropic velocity distributions.

Tidal Streams: Instability will act to disperse streams;
alternately, long-lived tidal streams place limits on the
triaxiality of the galactic mass distribution.

Galactic Bulges: Instability will affect orbits in the
central regions and affect stellar interactions with the
central black hole.

Young Stellar Clusters: Systems are born irregular
and become rounder: Instability dominates over stellar
scattering as mechanism to reshape cluster.

Galactic Warps: Orbits of stars and gas can become
distorted out of the galactic plane via the instability.



CONCLUSIONS

Density distribution = truncated Hernquist profile
for both dark matter halos and young star clusters;
Analytic results for orbits in spherical limit
Analytic forms for the gravitational potential and
forces In the inner limit -- Triaxial generalization
Orbits around the principal axes are Unstable
Instability mechanism described mathematically
by a STOCHATIC HILL’S EQUATION

Growth rates of Stochastic Hill’s Equation have

Asymptotic and Anomalous parts (found
analytically);
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Physical Portion of the Possible
Spirographic Parameter Space
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Application to LMC Orbit
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I Spirographic approximation
reproduces the orbital shape

o | /Il conserves angular momentum

Compare with observational

uncertainties of 10-20 percent.




