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NEED TO EXPLAIN:

* Why BHs ubiquitous in present-day
galaxies

* QSOs with M>10°M_, at z>6
— Age of Universe <20 tg, ..., (fore~0.1)

4

Eddington-limited accretion would have to:
— Start early

— Be nearly continuous
— Start with Mg, >10 - 100 M




The Rees Flow Chart
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18 years later...
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CAN THE SEEDS OF

SUPERMASSIVE BHs FORM
BY DIRECT COLLAPSE?

...without a stellar precursor?



STARS FIRST DIRECT COLLAPSE

e M~104-102Mg yr! e« M>0.1 Mg yr!

 Core contraction e Potential too deep for
halted by nuclear nuclear ignition to halt
ignition contraction
 High-entropy * Low entropy core
throughout Pyas ~ Prad
High entropy envelope

prad >> pgas



ARE HIGH INFLOW RATES POSSIBLE?

e “Natural” gravitational infall rate v3/G
— What vV to use: v;. of background or c.?

— Rotation weak: ~ radial infall, mediated by turbulence,
“angular momentum segregation”

— Rotating: global instability, “bars within bars”

— Does fragmentation stop collapse?
* Multiple thermal phases
* How efficient is star formation?

e Possible sites of rapid infall
— T,,>10* K haloes: M > 0.1 M, yr-!

vIr

— Aftermath of mergers (Di Matteo, Hernquist, Springel ...)
— Wherever quasars are fed (imagine the BH is missing)



STRUCTURES LAID DOWN BY RAPID
INFALL

e Self-gravity dominates
 Radiation-dominated, rotating
 Pre-BH:

— Entropy small near center, increases with r

— Very different from the supermassive stars
postulated by Hoyle and Fowler

e Post-BH:

— “Nuclear” energy source is BH accretion
— Expands and becomes fully convective
— Like radiation-dominated (metal-free) red giant



RAPID INFALL: NO BLACK HOLE

Mass m. (M) increases with time 0.1m Mg yr!
Core with Dy ~ Prag

Envelope Prog/ Pgss < 1'% >>1

— Entropy increases outward — convectively stable
— Rotation increases binding energy

Outer radius r. ~0.5m_ AU constant

Core radius r, ~ r./m. shrinks
— Nuclear burning inadequate to unbind star

Core mass ~ 10 M constant
When M. ~1800m ,, core temp. ~ 5x10° K

mm) rapid cooling by thermal neutrinos



. N
CORE COLLAPSE AND FORMATION
OF ~10-20 M, SEED BH

=5

SUBSEQUENT ACCRETION AT
EDDINGTON LIMIT



-
BUT WHOSE =




P LIMIT?

SUPPOSE A SEED BH
SETTLES IN THE
MIDDLE OF THE
ACCUMULATED GAS

Max. BH accretion rate is M.
for the mass of the
ENVELOPE

. M. ) .
M e = Me(Mgy)
\Y LMBH] = BH

BH

~—_—



GROWTH OF AN EMBEDDED BH

Could seed BH grow from ~10 to >10°Mg_, at M >> M, ?

(Begelman, Volonteri & Rees 06)



STRUCTURE OF A QUASISTAR

 BH accretes adiabatically from quasistar interior
2
: : o
Mgy ~M Bondi(j
C
e Adjusts so energy liberated ~ L_,(M.)

 Radiation-supported convective envelope
(w/rotation)

— Central temp drops to ~ 10° K
— Radius expands to ~ 100 AU
— Photosphere temp. drops as BH grows

* T, <4000 K =) opacity crisis
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FPOF 111 Lithiumn-free

Mayer & Duschl -
2005 I

Metal-free
opacities
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Mayer & Duschl

2005
POP 111

If T

drops below minimum (~4000 K), flux inside
quasistar exceeds Eddington limit, dispersing it.

phot




CONNECTION TO BH ACCRETION

9/20
Tphot _ 0.25a—1/5 L mZ/ZOmI;I%I/5
4000 K N

Once limiting temperature is reached,

L
—7/9,,~8/9

LE

... dispersal is inevitable (and accelerates)
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CAN QUASISTARS BE
DETECTED?

...consider 10% K haloes as parent population



DETECTING A QUASISTAR

e Most time spent as ~4000 K blackbody
» Radiates at Eddington limit for 10°m; M

|:v,max - 2 3X10 m TSOOO (1+ Z) DL ,Gpc y
= (1 +2)Tgpee pm

e Max flux ~

10° —-5x107" Jy for z ~6—20, m, ~10° —10°
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DETECTING A QUASISTAR

e Better to observe @ 3.5um, on Wien tail

 Corona/mass loss/jet mm) hard tail, easier
detection



Sensitivity [Jy]

107

104

10

1t

107

10"

107

Iﬂ-ll:l

100, 10°s integration

hirmar-scmened

sunshickl
erecrnr Moise thermal emssion
e, —— Py

e [mape, R=5

s Spectrim,
H=1,000

Redisced IF,
A reflectiviny

WIEN TAIL - |L

MASS LOSS MAY
IMPROVE FURTHER

Scxmered
Filiacal lJl_l,Iar

=N

Thermal
Fauliacal IIl;['ur sitishibelil thesmeal emisdnn

Mirror-sciteered

0.1

1

10

Wavelength [pm]

1040



HOW COMMON ARE QUASISTARS?
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...but their lifetimes are short
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HOW TO DISTINGUISH FROM OTHER
OBJECTS?

e Colors: ~pure blackbody (not dust reddened)
— Observe on Wien tail
— No lines (distinguish from T dwarfs)

 Unresolved (distinguish from nearby
starbursts)

e Clustering (like 10* K haloes)
e Detect protogalactic host
 Radiation from quasistar coronae/jets?



WHAT HAPPENS NEXT?

e If super-Edd. phase extends beyond opacity
crisis, BH seeds could be as massive as 10° M

* Worst case: super-Edd. phase ends at ~10° M

* 10 tg,) eter Detween z=10 and z=6 mm) growth by
(only) 20,000

BUT

— Exceeding L, 4 by factor 2 =) squares growth
factor!

— Mergers can account for factor 10-100 of growth



CONCLUSIONS |

Star formation might be bypassed if
inflow rate is high enough (M >0.1M_, yr™)

BH seed can form in situ from the
infalling envelope itself (aided by v
cooling) or can be captured Pop lli

remnant

BH can grow at Eddington limit for the
surrounding envelope, which can be
>> My for the BH




CONCLUSIONS 11

BH seeds grow inside a “quasistar”
powered by BH accretion, with a
radiation pressure-supported
convective envelope

Min. T of quasistar is ~4000 K,
lifetime is > 106 yr

Quasistars could be common and may
be detectable by JWST
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