

Constraining massive star formation with interferometry observations

Henrik Beuther km/s SMA 36 Submillimeter Array 0 PdBI Δ Dec. ["] VLA **ATCA** Δ R.A. ["]

Overview

☐ What are the physical conditions at the onset of massive star formation? ☐ How do rotation, infall and disks behave in massive star formation? ☐ How do massive clumps fragment, and what are their density distributions? Summary ☐ HERCOOLES: The Herschel Cooling Program for Early Stages of Massive Star Formation (An Open Time Key Proposal) ☐ What do imaging spectral line surveys tell about physics, chemistry and on the long run biology?

Suggested evolutionary Sequence

High-mass cores with accreting protostars destined to become high-mass stars

$$M_{star} < 8 M_{sun}$$

High-Mass Protostellar Objects (HMPOs, including Hot Cores)

$$M_{star} > 8 M_{sun}$$

Main-sequence stars

□ What are the physical conditions at the onset of massive star formation?

☐ Rotation, infall and disks in MSF?

Eragmentation and density distributions?

Summary

IHERCOOLES: A Herschel OT Key Project.

☐ Imaging spectral line surveys revealing physics/chemistry and potentially biology?

A sample of IRDCs: Potential HMSCs?

Are high-mass starless cores existing? The case of IRDC 18223-3

Conditions at the onset of massive star formation?

Rotation, infall and disks in MSF?

☐ Fragmentation and density distributions?

Summary

IHERCOOLES: A Herschel OT Key Project.

☐ Imaging spectral line surveys revealing physics/chemistry and potentially biology?

Rotation and outflow at the onset of MSF

IRDC 18223-3, distance ~ 3.7kpc

- Outflow wings +-15 km/s
- Outflow mass 13.2 M_{sun}
- Outflow rate 3.5x10⁻⁴ M_{sun}/yr
- Dynamical age $\sim 3.7 \times 10^4 \, \text{yrs}$

- $\Delta v \sim 2.1 \text{ km/s}$
- Velocity spread ~ 2.5 km/s
- Structure size ~ 25000 AU
- Likely optically thick line?

Fallscheer et al., in prep.

The Disk candidate in IRAS 18089-1732

A more evolved disk in MSF?

Massive disk candidates at mid-infrared Wavelength: CRIRES observations at VLT

CRIRES observations of massive disk candidates II

☐ Conditions at the onset of massive star formation? ☐ Rotation, infall and disks?

How do massive clumps fragment, and what are their density distributions?

Summary

- ☐ HERCOOLES: A Herschel Open Time Key Project.
- ☐ Imaging spectral line surveys revealing physics/chemistry and potentially biology?

Fragmentation of a massive protocluster

Assumptions: - All emission peaks of protostellar nature

- Same temperature for all clumps (46K, IRAS)

Caveats: - Temperature structure

- Peaks due to different emission processes, e.g., outflows?
- Are these cores bound or unbound?

- 12 clumps within each core.
- Integrated masses 98M_{sun} (south) 42M_{sun} (north) --> 80 to 90% of the gas in halo
- Core masses
 1.7M_{sun} to 25M_{sun}
- Column densities 10²⁴cm⁻² -->A,~1000

Dissecting the Hot Core G29.96

- 0.36"x0.25" resolution
- 4 sources within
 6900(AU)² protoTrapezium with
 protostellar density of
 ~ 2x10⁵ protostars/pc³
- Three different sites of massive star formation in very close proximity (UCHII, submm, MIR)

Grey: 862µm continuum

Full contours: NH₃

Dashed contours: cm continuum

Fragmentation in W3

 \square At 0.35" resolution we resolve three sources with 1" (=2000AU), coincident with previous cm and NIR source --> proto trapezium. 5000 < A_v < 10000.

Outflows emanate close to the line of sight. That only allows detection in NIR.

- \square SO₂ gradient across sources. Probably a rotating (infalling?) envelope around sources. SO₂ line-width toward mm peaks \sim 6.2 and 7 km/s. What about disk(s)?
- \square SO₂ velocity discontinuity south-east of cores.

Multi-wavelength observations of the HMPO IRAS 05358

Density distribution of sub-sources

$$V(s) \sim s^{\alpha}$$

with $\alpha = p+q-3$
and $T \sim r^{-q}$
 $(q \sim 0.4)$
 $n \sim r^{-p}$
 $p=1.5 --> \alpha=-1.1$
 $p=2.0 --> \alpha=-0.6$

Summary

- \square Exploring the onset of massive star formation (IRDCs).
- ☐ Massive accretion disk studies are still in its infancy. Toroids or disks?
- ☐ Some fragmentation studies support early gravo-turbulent fragmentation, however, extreme cases?
- \square Density distributions of young massive cores $\rho \sim r^{-p}$ with 1.5 < p < 2.

- --> Massive star formation up to 30 M_{sun} consistent with accretion scenario. Coalescence may exist in some extreme cases.
- --> Interferometry is powerful tool to investigate the physics and chemistry of many astrophysical phenomena.