

Paola Caselli (INAF&KITP)

School of Physics & Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES

Chemistry is needed to study:

- Structure and kinematics
- Thermal and non-thermal motions
- Ionization fraction
- Gas composition -> cooling mechanisms
- Gas temperature and volume density → pressure
- Shock structure and energetics
- Cloud ages?

Main Uncertainties

- Cosmic-ray ionization rate
- Elemental abundance (e.g. metals)
- Oxygen chemistry
- PAHs abundance
- Surface chemistry
- H₂ ortho-to-para ratio

Constant need of interaction with **real** chemists (theory + lab, gas-phase+solid state), who provide rate coefficients, collisional rates, transition frequencies...

Suzukí et al. 1992

The majority of the cores are embedded in molecular clouds "chemically young" material may continue to flow in during core

contraction and collapse!

~0.05-0.3 km/s within 0.3 pc (Schnee, Caselli, Goodman et al. 2007)

Freeze-out vs. Free-fall

$$t_{dep} = \frac{1}{\alpha n_d \pi a_d^2 v_t} \approx 10^9 \sqrt{m_X / T} (n_H \alpha)^{-1} \text{ yr}$$

$$t_{ff} = \left(\frac{3\pi}{32G\rho}\right)^{-1/2} = 4 \times 10^7 (n_H)^{-1/2} \text{ yr}$$

Walmsley 1991 van Dishoeck et al. 1993

Píneda, Casellí & Goodman (2007)

CO isotopologues in Perseus: the X-factor and physical properties.

 $X \sim 1-2 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$

 $A_{Vth} \le 1$ mag for ^{12}CO $\sim 1-2$ mag for ^{13}CO $\sim 2-3$ mag for $C^{18}O$

 $T_{ex} \sim 5 \text{ K at } A_{V} \leq 2 \text{ mag}$ $\sim 13 \text{ K at } A_{V} \geq 4 \text{ mag}$ $T_{ex} < T_{dust} \sim 16 \text{ K}$ PDR codes: non-thermal motion and density changes can explain the obs. variation among the Perseus regions.

• 60% of the CO gas is subthermally excited, i.e. n_H << 3000 cm⁻³

Multiwavelength study of TMC-1C:

- 850 and 450 μm (JCMT)
- 1.2mm (IRAM-30m)
- C¹⁷O, C¹⁸O, N₂H⁺

- T.

At dust peak position:

- $T_{dust} \sim 6 \text{ K}, n_c \sim 10^6 \text{ cm}^{-3}$
- $T_{gas}(CO) \sim 12 \text{ K (it drops outwards)}$.

Schnee & Goodman 2005 Schnee, Caselli, Goodman et al. 2007

Interferometric obs for L1544: NH₃ @ VLA NH₂D @ PdB

The gas temperature drops to 6 K in the central 1000 AU (2×10⁶ cm⁻³)!

Crapsi, Caselli, Walmsley & Tafalla 2007

Chemical structure of L1544

N₂H⁺ and N₂D⁺ are good tracers of the core nucleus (Caselli et al. 2002b)

D-fractionation increases towards the core center (Caselli et al. 2002c)

The strong ortho-H₂D+ emission:

Caselli et al. 2003, A&A, 403, L37

CNO-bearing molecules are almost completely (≥ 98%) frozen within R

$$[H_2D^+] \sim [H_3^+]$$

 \downarrow
 $[D_3^+] \sim [D_2H^+] \sim [H_2D^+]$

Roberts et al. 2003, 2004 Walmsley et al. 2004 Hugo & Schlemmer, in prep.

Casellí et al., in prep.

$$\frac{x(H_2D^+)}{x(H_3^+)} = \frac{k_1x(HD)}{k_{-1} + k_{CO}x(CO)/f_D + k_ex(e) + k_gx_g}$$

Keto & Caselli (in prep.)

- Bonnor-Ebert sphere
- Simple CO chemistry (freezeout + photodissociation)
- Radiative energy balance (+photoelectric heating)
- Radiative transfer

Photoelectric Heating (Bakes & Tielens 1994)

Heating rate: $\Gamma_{pe} = 10^{-24} \varepsilon G_{pe}(r) n(\mathrm{H}_2) \mathrm{erg cm}^{-3} \mathrm{s}^{-1}$

Computing $G_{pe}(r)$, the intensity is averaged over frequency and angle, Ω , from point r to the surface:

$$G_{pe}(r) = \frac{\int \int \int_{6MeV}^{\infty} J_{v} \exp(-\tau_{v}(r,\omega)) dv d\Omega}{\int \int \int_{6MeV}^{\infty} J_{v} dv d\Omega}$$

Conclusions

- Chemistry is needed to find the right tracers throughout interstellar clouds (and protoplanetary disks).
- In molecular clouds, CO is photodissociated at $A_V \le 1$ mag, subthermally excited at $A_V \le 4$ mag and frozen-out at $n(H_2) \ge a$ few×10⁴cm⁻³ (starless cores).
- Embedded dense cloud cores accrete material from the surroundings at velocities ~ 0.1..0.3 km s⁻¹.
- In pre-stellar cores, the gas and dust temperature approach 6 K at $n(H_2) \sim 10^6$ cm⁻³. Increase in dust opacity.
- H_2D^+ is a great tracer of kinematics and ion-fraction at $n(H_2) \ge 10^5$ cm⁻³.

 $\zeta = 1.3x10^{-17} \text{ s}^{-1}$

The cosmic-ray ionization rate (?)

see also Padoan & Scalo 2005