The Competitive Accretion Debate

^{1,2} Paul C. Clark
 ²Ralf S. Klessen
 ³Ian A. Bonnell
 ³Rowan J. Smith

¹ KITP

² University of Heidelberg

³ University of St Andrews

What is CA and how does it work?

- Theory to help explain the form of the IMF, motivated by two properties of star formation:
 - Stars form in groups, (associations, clusters).
 - Clusters tend to be mass-segregated, perhaps from birth.
- Works by considering how much mass a newly formed star can accrete, over and above the mass which went into collapse to produce it.

Accretion and the IMF...

Gas inflow

Accretion rate:
$$\dot{M}_* = \pi \rho V_{\rm rel} R_{\rm acc}^2$$

Zinnecker (1982) Bonnell et al (2001a,b)

 Gas dominated phase: tidal-lobe accretion,

$$R_{\rm tidal} \approx 0.5 \left(\frac{M_*}{M_{\rm enc}}\right)^{1/3} R,$$

 Stellar dominated phase: Bondi-Hoyle accretion,

$$R_{\rm BH} = 2GM_*/(V_{\rm rel}^2 + c_{\rm s}^2)$$

 $dn/dm \propto m^{-1.5}$

 $dn/dm \propto m^{-2.5}$

Hierarchical process...

- Hierarchical dissipation of turbulence
- Small scales loose support first:

$$t_{\rm disp} \sim t_{\rm cross} \sim L/\sigma(L)$$

 $t_{\rm cross} \sim L^{0.5}$

 Followed by collapse of progressively larger regions

Features of the CA mass function

Grows in time

All mass bins are related

Sensitivity to cloud conditions....

Larson (1985, 2005):

$$T = 4.4 \ (\rho / 10^{-18})^{-0.27} \ K$$
,
 $(\rho < 10^{-18} \ gcm^{-3})$
 $T = 4.4 \ (\rho / 10^{-18})^{+0.07} \ K$,
 $(\rho > 10^{-18} \ gcm^{-3})$

Found that changing the initial Jeans mass in the setup, alters the position of the 'knee' in the IMF.

Does competitive accretion really need such fine tuning?

Conditions for CA (1)

- Competitive accretion requires a region in which the collapse timescale and interaction timescale are similar.
- If the clump densities and cloud density are roughly equal, then:

$$t_{inter} \sim t_{ff}$$

• Any region with multiple Jeans masses automatically satisfies this requirement.

Conditions for CA (2)

• If the ratio of the mass above and below the Salpeter break is to remain the same, then:

$$t_{frag} \sim t_{acc}$$

• Any region characterised by a common density, by which both fragmentation and accretion are dictated, satisfies this requirement.

Unbound clouds

 $KE = 2 \times PE$ (initially), 1000 solar masses, 0.5pc

No global collapse:

local t_{ff} < global interaction timescale

$$t_{\rm ff} \sim 2 \times 10^5 \text{ years}$$

Clark, Bonnell & Klessen (2007)

Mass functions?

Isothermal EOS

Barotropic, Larson (2005), Style EOS

RT! (without actually doing RT)

Fit (fudge) to MC models:

$$T = 100K \left(\frac{M}{10 M_{\odot}}\right)^{a} \left(\frac{R}{1000 AU}\right)^{q}$$

a: $0.33 \text{ M}_{\odot} < 10$

a: $1.1 M_{\odot} > 10$

q: -0.4 to -0.5

Robitaille et. al. 2006

Observational tests?

Stars Clumps × 1.0 1.0 -0.5 column density [g/cm²] 0.0 -0.5 -1.0 L -1.0 0.0 x [pc] -0.50.5 1.0

Clump mass functions

88 sink particles

SPH data mapped to a 2D grid with resolution ~1000 x 1000 au

Column densities limited to range 0.02- 2.00 cm⁻²

Clumps required to have a density contrast of a factor 2 in column density

91 "sink-less" clumps

Clump velocity dispersions

Each cluster has it's own central velocity

Distribution around this velocity is ~ 0.25km/s, and the mean is only ~0.7 km/s for the whole region.

Typical of turbulent stagnation points (e.g Padoan et al 2001)

Similar velocities to *André* et al (2007)

Can you see competitive accretion?

André et al (2007):

- Used the to estimate interaction
- From Binr (1987),

• Using (for L1688):

For the Bonnell et al (2006) cloud:

$$t_{cross} \sim 1.7 Myr$$

$$t_{coll}/t_{cross} \sim 13.5$$

0.55pc

$$_{\rm nps} = 57$$

6km/s

$$\frac{t_{coll}}{t_{cross}} = \frac{1}{2} \sqrt{\frac{\pi}{3}} \times \frac{R^2}{N_{cond} r_{cond}^2} \times \frac{1}{1 + \Theta}$$

where,

$$1 + \Theta \equiv 1 + GM_{cond}/(\sigma_{1D}^2 r_{cond})$$

$$R_{cond} \sim 2500 AU$$

$$M_{\rm cond} \sim 0.4 M_{\odot}$$

$$t_{cross} \sim 1.78 Myr$$

• Get time-scale ratio:

$$t_{coll}/t_{cross} \sim 9$$

Threshold for massive star formation?

• McKee and Tan (2003): $\Sigma_{crit} \sim 1g/cm^2$

CHARACTERISTIC S	SUPEACE I	DENSITIES OF L	REGIONS OF HIGH	H-MASS STA	P FORMATION
CHARACIERISTICA	OKFACEI	JENSII IES OF F	CEGIONS OF THG	H-IVIA 55 5 I A	K FURMATION

Object	$M \ (M_{\odot})$	R _{1/2} (pc)	$\frac{\Sigma}{(\mathrm{gcm^{-2}})}$	${ar P_{ m cl}/k} \ ({ m K~cm^{-3}})$	References
Galactic star-forming clumps Orion Nebula Cluster Arches cluster	$3800^{a,b}$ 4600^a 2×10^4	0.5 ^b 0.8 0.4	1.0 0.24 4	4×10^{8} 2×10^{7} 7×10^{9}	1 2 3, 4
Galactic globular clusters NGC 1569 A1, A2 NGC 5253	2×10^{5a} 4×10^{5a} $(0.6-1.5) \times 10^{6c}$	3.4 2.2 1.0	0.8 2.7 20–50	3×10^{8} 3×10^{9} $(2-11) \times 10^{11}$	5, 6 7, 8 9

a Virial mass estimates.

REFERENCES.—(1) Plume et al. 1997. (2) Hillenbrand & Hartmann 1998. (3) Figer et al. 1999. (4) Kim et al. 2000. (5) Binney & Merrifield 1998. (6) van den Bergh et al. 1991. (7) Gilbert & Graham 2001. (8) de Marchi et al. 1997. (9) Turner et al. 2000.

^b The half-mass radius is not well defined for the Plume et al. 1997 clouds, since the mass distribution on larger scales is not known. We therefore evaluate $\Sigma = M/\pi R^2$ using the typical radius and virial mass that they observe.

^c Extrapolation from inferred Lyman continuum luminosity of H π region based on Salpeter IMF with a lower mass limit $m_{\ell} = 1, 0.1 M_{\odot}$.

Conditions required by CA

• In CA calculations, roughly 500 M_{\odot} gas accreted before massive star (8-10 M_{\odot}) is formed.

$$f_{\rm sfe} = \frac{M_*}{M_* + M_{\rm gas}} = \frac{M_*}{M_{\rm clump}} \qquad \qquad M_{\rm clump} = M_* \ / \ f_{\rm sfe}$$

$$\Sigma_{\rm crit} \sim {\rm M}_{\rm clump}^{1/3} \, \rho_{\rm frag}^{2/3} \, \phi_{\rm geom}^{2/3} \qquad \qquad \phi_{\rm geom} = (4\pi/3)$$

Larson (2005) suggests this is set by the transition from line to dust cooling: $\rho_{\rm frag}$ 10⁻²⁰ - 10⁻¹⁷ g/cm³

$$\Sigma_{\rm crit} \sim 1 {\rm g \ cm^{-2}} \left[\frac{M_*}{500 \ {\rm M_{\odot}}} \right]^{1/3} \left[\frac{f_{\rm sfe}}{0.5} \right]^{1/3} \left[\frac{\rho_{\rm frag}}{2 \times 10^{-19} \ {\rm g \ cm^{-3}}} \right]^{2/3} \left[\frac{\phi_{\rm geom}}{4.2} \right]^{2/3}$$

Discs?

 Relationship between disc mass and protostellar system mass:

$$m_{disc} \propto m_{sys}^{1.5-2}$$

- Note that discs come and go!
- Angular momentum vector can change!

CA at low metallicity?

• Omukai et al (2005) suggest that cooling by dust can promote fragmentation, even at very low metallicities:

CA at low metallicity

$$t = t_{SF} - 67yr$$

 $t = t_{SF} - 20yr$

 $t = t_{SF}$

200 au

$$t = t_{SF} + 53yr$$

 $t = t_{SF} + 233yr$

Violent fragmentation...

CA at low metallicity?

- Fragmentation at very low Jeans mass.
- Moves very rapidly into B-H accretion phase.
- Salpeter-type slope extends right down to the fragmentation mass.

Summary

- Competitive accretion requires bound, collapsing regions to produce the 'correct' IMF.
- Difficult to use observed interaction time-scales to estimate the competitive accretion rates: tend to neglect the changing potential which plays a crucial role.
- CA models so far require Σ_{crit} ~ 1g/cm²
- Disc observations may help to determine importance of interactions.