Observed signposts of turbulence dissipation in molecular clouds

E. Falgarone

LERMA/LRA, Ecole Normale Supérieure & Observatoire de Paris, France

P. Hily-Blant & J. Pety,

IRAM, Grenoble, France

and

G. Pineau des Forêts

Institut d'Astrophysique Spatiale, Orsay, France

- Comparison of two similar fields in different gravitational environments
- Extrema of line Centroid Velocity Increments (E-CVI): an ombilical cord of dense cores in molecular clouds?
- Why dissipative structures?

"Star formation through cosmic time", Santa Barbara, November 2007

Large scale environments: 30-parsec scale

Polaris flare: 27 pc \times 27 pc field 100 (red), 60 (green) and 12 μ m (blue) reprocessed IRAS maps

Taurus-Auriga clouds: cold dust emission Hily-Blant 2004 and B_{\perp} Heiles 2000

30 pc-scale:

same virial mass, $M_V \sim 4 \times 10^4~{\rm M}_{\odot}$

• Polaris: $M_{gas}/M_V \sim 0.16$

• Taurus: $M_{gas}/M_V \sim 1$

Compared properties of the two parsec-scale fields

Parsec-scale:

• turbulent

 $M \sim$ 5 in Polaris, $M \sim$ 2 in Taurus

translucent

 $A_v \sim$ 0.8 to 1 mag in both fields

- Polaris: trans-Alfvénic turbulence dense core environment
- Taurus: cloud edge, no dense core

Taurus (left) – Polaris (right)

The tool: statistics of increments of line centroid velocities

IRAM-30m, 8000 spectra (now 35000, resol 11") Fully sampled, resolution 20"

Line centroid velocity:

$$C(\mathbf{r}) = \int T(\mathbf{r}, v_x) v_x dv_x / \int T(\mathbf{r}, v_x) dv_x$$

Miesch & Scalo 1999, Pety & Falgarone 2003, Brunt et al. 2003, Ossenkopf et al. 2206, Esquivel & Lazarian 2005,...

Extrema of line centroid increments (E-CVIs) trace extrema of $(\langle \omega_y \rangle^2 + \langle \omega_z \rangle^2)^{1/2}$

Lis et al. 1996

PDFs of Centroid Velocity Increments with variable lags

Where do the non-Gaussian tails of CVI-PDFs come from?

Space-velocity cuts of $^{12}CO(1-0)$ line intensity, (grey scale in K), line centroid (dashed), CVIs (dots) Hily-Blant & Falgarone

2007

E-CVIs trace sharp local variations of \$^{12}CO\$ linewing

Spatial distribution of E-CVIs

Taurus

- Elongated structures of thickness $\leq 0.03 \text{ pc}$
- **Taurus:** parallel to B_{\perp} ,
- Polaris: rms orientation of 30°
- CVI $_{max}$ in Polaris \sim 3 CVI $_{max}$ in

Taurus

Self-similarity of PDFs of CVIs

0.5 Polaris large scale (5 pc) 25.5 KOSMA data, resolution 120", Bensch et al. 2001 0.4 0.3 0.5 pc 10-2 0.2 10^{-4} $\log_{10} P(\delta C_l)$ 0.1 10^{-4} 5 $\delta C_{l} / \sigma(\delta C_{l})$ 123.8 123.6 123.4 123.2 l_u [deg]

Parsec scale coherence of E-CVIs

From 7 mpc to 3 pc

Space-velocity cuts

 $^{12}CO(2-1)$ integrated intensity (K km s⁻¹)

Space-velocity slices: observations and MHD simulations

in Polaris Flare, across a large-CVI structure

Why trans-Alfvénic turbulence?

Structures in 12 CO(1-0) linewing emission (CLUMPFIND): Histograms of their aspect ratios, minor axis, internal velocity dispersions, position angles, Φ From the rms dispersion of Φ :

$$B_{pos} \propto n_{\rm H}^{1/2} \Delta v/\delta \Phi \sim 15 \mu {\rm G}$$
 for $n_{\rm H}=500~{\rm cm}^{-3}$ Chandrasekhar & Fermi 1953 and:

 $\overline{v} \sim v_A$ Hily-Blant & Falgarone 2007

Why do E-CVIs matter?

Hily-Blant, Falgarone & Pety 2007

Histogram of $N(CVI) \times CVI^2$ for l=3 (diamonds) and cumulative histogram (full dots)

 \rightarrow E-CVIs above 1.5 σ of PDFs (PDF for l= 3: $\sigma=0.1\,\rm km\,s^{-1})$ contribute \sim 30% of the energy dissipation

Scaling of CV p^{th} -order structure functions with p

Extended Self-Similarity exponents Benzi et al. 1993

HD scaling: She & substituting sequence 1994, $\theta = 1/3$, D = 1, $\beta = 2/3$

MHD scaling: Boldyrev et al. 2002, $\theta = 1/3$, D = 2, $\beta = 1/3$

E-CVIs as tracers of "intermittency"

Same statistical and structural properties as intermittency of **velocity field** in incompressible or mildly compressible turbulence, magnetized or not:

- non-Gaussian tails of PDFs increase at small lags [1]
- anomalous scaling of CV structure functions [2]
- thin (0.02 pc) elongated structures of E-CVIs, coherent over > 1pc [3]
- \bullet E-CVIs trace intense velocity shears (PdBI data: velocity shear \sim 200 km s $^{-1}$ pc $^{-1}$ over 7 mpc) [1]
- not associated with density/column density peaks
- most turbulent field at large scale (Polaris) is most intermittent at small scale [4]

Intermittency in incompressible and mildly compressible turbulence

Moisy & Jimenez JFM 2004

[1] non-Gaussian statistics of velocity derivative signals

more pronounced at small scale

- [2] anomalous scaling of p^{th} order structures functions $\zeta_p \neq p/3$ She & Levêque 1994
- [3] existence of **coherent structures** of intense vorticity, shear, rate of strain, ...
- [4] non-local interactions between widely separated scales: small scale intermittency related to large scale properties of the flow, in HD and MHD Mininni et al. 2006, Pouguet et al. 2006
- [5] clustering of coherent structures, inertial range intermittency Moisy & Jimenez 2004

E-CVIs as tracers of local enhanced dissipation: CO emission

Optically thin $^{12}CO(1-0)$ emission: $[^{12}CO]/[^{13}CO] > 35$

LVG analysis and translucent constraint:

dense and cold solutions ruled out: $n_{\rm H_2}~<10^3\,{\rm cm^{-3}}$, $T_k>25{\rm K}$

Gas in E-CVIs regions may be as warm as 200K

E-CVIs as tracers of local enhanced dissipation: $HCO^+(1-0)$

Observed HCO⁺ abundances are **more than one order of magnitude** above predictions

of **steady-state chemical models**: non-equilibrium chemistry Falgarone, Pineau des Forêts, Hily-Blant & Schilke 2006

Relaxation tracks versus observed HCO+ abundances

Cooling tracks for same initial density and two different UV shieldings, $A_v = 0.5$ and 1 mag. Observations meet models in the range T = 100-200 K, $n = 200-10^3$ cm⁻³

Energy balance: observations versus relaxation model

For gas at $T_k = 100$ to 200 K, $\Lambda_{tot} = 30$ to 40 Λ_{CO} Radiation of the wing structures balances the turbulent energy input for a volume filling factor:

21

 $f_v = \overline{\epsilon}_{turb} / \Lambda_{tot} = 0.02 \text{ to } 0.03$ for $\Lambda_{tot} = 2-3 \times 10^{-22} \text{ erg cm}^{-3} \text{s}^{-1}$ and $\overline{\epsilon}_{turb} = 6 \times 10^{-24} \text{ erg cm}^{-3} \text{s}^{-1}$

Conclusions and Open Questions

In translucent molecular gas:

- intermittency of velocity field similar to that of incompressible/mildly compressible turbulence
- intermittency more pronounced in most turbulent field at large scale
- \bullet observed intermittent structures: thickness: \leq 0.02 pc, down to 7mpc, coherent over \sim 3pc or more
- signposts of turbulence dissipation (thermal, chemical, radiative)

Open questions:

- nature of these structures, unlikely to be shocks
- role of magnetic fields
- actual smallest scale (ALMA) and radiative cooling rate (Herschel/HIFI)