Circumnuclear Disks: A Case for Star Non-formation (Or Non-star formation)

Nick Gnedin

Co-starring

Outline

- AGN feedback in cosmology
- Тише едешь дальше будешь
- Dynamics of the circumnuclear disk
- Brief conclusions

AGN Feedback

Our Goal

- Use cosmological Adaptive Mesh Refinement simulations to resolve the structure of the AGN environment on sub-parsec scales.
- Challenges:
 - Large dynamic range (>10⁷)
 - Large range of relevant time-scales
 - High numerical fidelity is required
 - Complex physics

Тише едешь – дальше будешь

Time

From Mega-pc to milli-pc

Quasi-Stationary State

Super-sonic Turbulent, Cold, Molecular Disk

Turbulent Diffusion of the Angular Momentum

$$\frac{\partial}{\partial t}(J_{z}) + \frac{1}{R} \frac{\partial}{\partial R} (Rv_{R} J_{z}) = \frac{1}{2\pi R} \frac{\partial G}{\partial R}$$

Viscous torque:

$$G(R,t) = 2\pi \nu \Sigma R^3 \frac{\partial \Omega}{\partial R}$$

(Pringle 1981)
Turbulent viscosity

Disk Stability

Turbulent Viscosity

Conclusions

- A gas-rich circumnuclear disk reaches a quasi-stationary state that is characterized by a power-law density profile.
- The disk is globally unstable but locally stable; it does not fragment into stars catastrophically.
- The structure of the disk is entirely determined by the super-sonic turbulence in the gas.

The End

