Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

Paul F. Goldsmith¹, Di Li¹, Mark Heyer², Ronald Snell², Gopal Narayanan², and Chris Brunt³

¹ Jet Propulsion Laboratory, California Institute of Technology ² FCRAO, Department of Astronomy, University of Massachusetts, Amherst ³ University of Exeter

OPTICAL IMAGE OF TAURUS

It has Long Been Recognized as a Nearby Region Containing a Lot of Dust

Dust Extinction in IR Has Provided a New Tool for Probing Cloud Morphology

Kenyon, Gómez, & Whitney (2007)

Figure 1. Star count map of the Taurus-Auriga dark clouds. This map was prepared for this paper from stars with $J \le 16.5$ in the 2MASS point source catalog downloaded from the IRSA archive. The intensity scale is proportional to the number of stars per square arcmin. The dark clouds are clearly visible as low density regions. Two small bright regions are the open clusters NGC 1647 (RA = 4^h46^m, Dec = 19°) and NGC 1750/1758 (RA = 5^h04^m, Dec = 24°).

Observations of the Gas can Contribute Critical Information on

- Gas Temperature
- Gas Column Density & Distribution
- Mass
- Kinematics
- 1. Requires High Angular Resolution to Reveal Structure
- 2. Requires Extended Coverage to Trace Connection to Large Scale Structure
- 3. Focal Plane Array on MM Telescope is the Enabling Technology

The Taurus Molecular Cloud Complex: The Big Picture

Ungerechts & Thaddeus 1987 ApJS

Distance = 140 pc 1 deg = 2.4 pc

FIG. 1.—Velocity-integrated intensity of CO emission, W_{CO} . The lowest contour is 0.5 K km s⁻¹, and the separation between contours is 1.5 K km s⁻¹. The border of the surveyed region is indicated by the outer, solid line; in the small regions beyond the dashed line the map is undersampled, with a spacing of 4^m × 1°.

~100 Square Degree Area of Taurus

elected from Ungerechts & Thaddeus (1987)

¹²CO Integrated Intensity

0.5 Deg Beam Size and Sampling

What impression do you get from this map?

Studying molecular clouds = "blobology"

12 degrees

FCRAO Map 50" beam Nyquist-sampling => 3x10⁶ pixels 12C0 MAXIMUM INTENSITY

Declination

Right Ascension (J2000)

6 $+28^{\circ}$ Declination (J2000) 4 $+26^{\circ}$ $+24^{\circ}$ 2 $+22^{\circ}$ $4^{h}50^{m}$ 40^{m} 30^m 20^{m} 10^{m}

Right Ascension (J2000)

S

K.km

TAURUS 13CO INTEGRATED INTENSITY

FCRAO Map 50" beam Nyquist-sampling => 3x10⁶ pixels

Mask 2 ^{/12}CO & ¹³CO detected in pixel; Mask 1 ¹²CO but not ¹³CO detected; Mask 0 neither isotopologue detected

Average Spectra in Each Mask Region

Mask 2 Data

- Both isotopologues in each pixel ("standard" cloud mapping situation)
- Find T_{ex} from max {¹²CO}
- Assume LTE so this directly yields T_{kin}
- Determine τ(¹³CO), R (¹²CO/¹³CO) and thus the column densities of both isotopologues

Dealing with Mask 0 and Mask 1 Data

- **Bin** pixels by excitation temperature and average spectra within each bin
- ¹³CO as well as ¹²CO then detected (30,000 200,000 pixels in each bin)
- Use data for both isotopologues with LVG model to determine n(H₂) and N(CO) per bin

 T_{kin} specified to be 15 K

- The result is relationship between N(CO) and $\rm T_{ex}$ and thus between T($\rm ^{12}CO$) and N(CO)

Behavior of Mask 1 Pixels

Derived $^{12}CO/^{13}CO$ ratio increases with increasing T_{ex}

 $n(H_2)$ decreases for lower T_{ex} due to subthermal excitation

Observed ¹²CO/¹³CO ratio drops with increasing T_{ex}

Distribution of CO Column Densities

¹²CO Column Density Image

Log N(¹²CO)

15

Conversion to H₂ Column Density

Region mapped includes a very large range of column density and thus of visual extinction

- Use of single fractional abundance for CO is almost certain to be seriously in error
- Adopt model from VanDishoeck & Black (1988) optimized for Taurus, which calculates N(CO) as fn. of N(H₂); we invert the process to get N(H₂) from N(CO)

X(CO) varies from ~ 10⁻⁶ in mask 0 to 10⁻⁴ in high-A_V portion of mask 2

Histogram of N(H₂) Distribution

H₂ Column Density Distribution in Taurus

Cumulative Distribution of Mass and Area

Lower CO Fractional Abundance in mask 0 and 1 Regions Greatly Increases Mass Determined In Our Analysis

Table 3.

Mask Region	Mass $(10^3 M_{\odot})$ a	b
0	0.1	4.1
2	7.8	11.8
Total	9.6	23.6

Mass of Region in Taurus Mapped

 $^{\rm a} U {\rm sing}$ constant ${\rm H}_2/{\rm CO}$ ratio equal to $2{\times}10^4$

^bUsing H₂/CO ratio with I(UV) = 1.0 and $\delta_C = 0.1$ from Van Dishoeck & Black (1988)

Masses Determined with Variable X(CO) and Including Diffuse Regions Agrees well with those Found from L(CO)

Table 5. Comparison of Masses Determined from ¹²CO and ¹³CO With Those Derived from CO Luminosity

Region	Mass from 1^{2} CO 1^{13} CO	12 CO Luminosity	Mass from 12 CO I
	(M_{\odot})	$(\rm Kkm s^{-1} pc^2)$	(M_{\odot})
mask 0	4081	193	791
mask 1	7699	2052	8413
${\rm mask}\ 2$	11752	3305	13550
Total	23532	5550	22754

Hitchiker's Guide to Taurus and Mass of High Density Regions

Mass of High–Density Regions in Taurus^a

Region	Mass ^b M_{\odot}	$\frac{\rm Area}{\rm pc^2}$
L1495	2616	31.7
B213	1095	13.7
L1521	1584	17.6
HCl2	1513	15.8
L1498	373	5.7
L1506	491	7.7
B18	1157	14.5
L1536	978	16.6
Total	9807	123.3

^aRegions defined in Figure 11

^bIncludes correction for He

Total Cloud Mass = 2.4x10⁴ Solar Masses

Enlarged Images of Some of the Regions with Numerous Young Stars

DG

L1495 and B213

14

Star Formation Efficiency (SFE) and Star Formation Rate (SFR)

3 definitions of SFE using $\langle M_{star} \rangle = 0.6M_{sun}$ (Palla & Stahler 2002)

- 1. Overall: Total stellar (230) mass / total gas mass = 0.006
- 2. Current: Protostar (Class I & embedded) mass / dense gas mass = 0.003
- **3. Pragmatic**: PMS star mass / dense gas mass = 0.012
- Avg. SFR over past 3Myr ~ 5x10⁻⁵ M_{sun}/yr
- Avg. SFR ~ $2x10^{-9}$ M_{sun}/yr per M_{sun} of molecular gas

Low SFE and SFR due in part to low fraction of dense gas at high column density

Magnetic Field Direction & Fractional Polarization

Superimposed on ¹²CO integrated intensity (5 km s⁻¹ to 8 km s⁻¹)

Striations in low-N region in NE follow field lines

Superimposed on ^{13}CO integrated intensity ($5~\text{km}~\text{s}^{\text{-1}}$ to $8~\text{km}~\text{s}^{\text{-1}}$)

B $_{\perp}$ long axis of B213 filament

Orientation of B w.r.t. B18 and L1506 less clear

Caveat: B-field inferred from optical absorption measurements

Striations in NE Region

The End

But there is much more that can be done with this data set

3000

4000

5000

1000

2000

HI Integrated Intensity (Hartman & Burton Leiden-Dwingeloo Survey)

700

6000

HI from Arecibo GALFA Survey Image in 5 to 6 km s⁻¹ Channel

