The Influence of Metallicity on Star Formation in Protogalaxies

Anne-Katharina Jappsen

Canadian Institute for Theoretical Astrophysics KITP

Collaborators

Simon Glover - AIP, Potsdam, Germany Ralf Klessen – Universität Heidelberg, Germany Mordecai-Mark Mac Low - AMNH, New York Spyridon Kitsionas – AIP, Potsdam, Germany

Hierarchical Structure Formation

- cold dark matter
- smallest regions collapse first
- "bottom-up" formation

Credit: S. Gottlöber (AIP)

Star Formation in the Early Universe

• Pop III stars

- Metal enrichment
 UV photons contribute
 to reionization
- injection of entropy into IGM

• Pop II stars

Credit: <u>NASA</u>, <u>ESA</u>, S. Beckwith (<u>STScI</u>) and the HUDF Team

The Questions

- What is the influence of low levels of metallicity on cooling and collapse of the gas?
- What about fragmentation? How small can the objects be that form - IMF?
- What is the role of the UV background?
- What are the time scales?
- How much cool gas?
- What is a appropriate description of the initial conditions and the environment?

A Critical Metallicity?

- A minimal level of enrichment is required before metals or dust can contribute significantly to the cooling:
 - C, O fine structure dust cooling cooling I $Z_{cr} \sim 10^{-3.5} Z_{sun}$ $Z_{cr} \sim 10^{-5} Z_{sun}$

Different Studies

Bromm et al. (2001):

- SPH simulations of collapsing dark matter mini-halos
- no H₂ or other molecules
- no dust
- only C and O atomic cooling

 $10^{-4} Z_{sun} < Z_{cr} < 10^{-3} Z_{sun}$

Different Studies

Omukai et al. (2005): one zone model

Different Studies

Omukai et al. (2005): one zone model

Numerical Method

- smoothed particle hydrodynamics (Gadget1 & Gadget2 - Springel et al. 01, 05)
- sink particles (Bate et al. 95)
- chemistry and cooling
- particle splitting (Kitsionas & Whitworth 02)
- different initial conditions

Chemical Model

32

33

34

35

36

1	${\rm H} + {\rm e}^- \rightarrow {\rm H}^- + \gamma$	16	Η
2	$\rm H^- + H \rightarrow H_2 + e^-$	17	Н
3	${\rm H} + {\rm H}^+ \rightarrow {\rm H}_2^+ + \gamma$	18	H
4	$\mathrm{H} + \mathrm{H}_2^+ \to \mathrm{H}_2 + \mathrm{H}^+$	19	С
5	$\rm H^- + \rm H^+ \rightarrow \rm H + \rm H$	20	Si
6	${\rm H^-} + \gamma \rightarrow {\rm H} + {\rm e^-}$	21	0
7	$\rm H_2^+ + e^- \rightarrow \rm H + \rm H$	22	С
8	$\mathrm{H}_2 + \mathrm{H}^+ \rightarrow \mathrm{H}_2^+ + \mathrm{H}$	23	Si
9	$\rm H_2 + e^- \rightarrow \rm H + \rm H + e^-$	24	0
10	$H_2 + H \rightarrow H + H + H \\$	25	0
11	$\rm H_2 + \rm H_2 \rightarrow \rm H_2 + \rm H + \rm H$	26	0
12	$H_2 + \gamma \rightarrow H + H$	27	С
13	$\mathrm{H} + \mathrm{e}^- \rightarrow \mathrm{H}^+ + \mathrm{e}^- + \mathrm{e}^-$	28	Si
14	${\rm H^+ + e^- \rightarrow H + \gamma}$	29	С
15	$\mathrm{H^-} + \mathrm{e^-} \rightarrow \mathrm{H} + \mathrm{e^-} + \mathrm{e^-}$	\$0	С
		31	Si

16	$\rm H^- + \rm H \rightarrow \rm H + \rm H + e^-$
17	$\mathrm{H^-} + \mathrm{H^+} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$
18	${\rm H}_2^+ + \gamma \rightarrow {\rm H} + {\rm H}^+$
19	$\mathrm{C^+} + \mathrm{e^-} \rightarrow \mathrm{C} + \gamma$
20	$\rm{Si^+} + e^- \rightarrow \rm{Si} + \gamma$
21	$\rm O^+ + e^- \rightarrow O + \gamma$
22	$\mathrm{C} + \mathrm{e}^- \rightarrow \mathrm{C}^+ + \mathrm{e}^- + \mathrm{e}^-$
23	$\mathrm{Si} + \mathrm{e}^- \rightarrow \mathrm{Si}^+ + \mathrm{e}^- + \mathrm{e}^-$
24	$\mathrm{O} + \mathrm{e}^- \rightarrow \mathrm{O}^+ + \mathrm{e}^- + \mathrm{e}^-$
25	$\rm O^+ + H \rightarrow O + H^+$
26	$\rm O + H^+ \rightarrow O^+ + H$
27	$\rm C + H^+ \rightarrow C^+ + H$
28	$\rm Si+H^+ \rightarrow ~Si^+ + H$
29	$\mathrm{C^{+} + Si \rightarrow C + Si^{+}}$
30	${\rm C} + \gamma \rightarrow {\rm C}^+ + {\rm e}^-$

 $+\gamma \rightarrow Si^+ + e^{-\gamma}$

$\mathrm{H} + \mathrm{c.r.} \rightarrow \mathrm{H^+} + \mathrm{e^-}$	S1	$\mathrm{H} + \mathrm{H} \to \mathrm{H}_2$
$\mathrm{H_2} + \mathrm{c.r.} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$	S2	$\rm H^+ + e^- \rightarrow \rm H$
$\mathrm{C} + \mathrm{c.r.} \rightarrow \mathrm{C^+} + \mathrm{e^-}$	S3	$\mathrm{C^+} + \mathrm{e^-} \to \mathrm{C}$
$\mathrm{O} + \mathrm{c.r.} \rightarrow \mathrm{O^+} + \mathrm{e^-}$	S4	$\mathrm{Si^+} + \mathrm{e^-} \to \mathrm{Si}$
$Si + c.r. \rightarrow Si^+ + e^-$		

hydrogen chemistry (photochemical & collisional)
carbon, oxygen and silicon chemistry
ionization due to cosmic rays
grain surface reactions
(Jappsen et al. 06)

Cooling and Heating

- gas-grain energy transfer
- H collisional ionization
- H⁺ recombination
- H₂ rovibrational lines
- H₂ collisional dissociation
- Ly-alpha and Compton cooling
- Fine structure cooling from C, O, Si

- photoelectric effect
- H₂ photodissociation
- UV pumping of H_2
- H₂ formation on dust grains

Initial Conditions I

- gas fully ionized
- initial temperature: 10000 K
- volume: (0.5) kpc³ (4.0) kpc³
- contained gas mass: 17% of DM Mass
- number of gas particles: 10⁵ 4 x 10⁶
- resolution limit: 2 M_{SUN} 400 M_{SUN}

(Jappsen et al. 07)

Parameter Study

- halo size: 5 x 10^4 M_{sun} 10^7 M_{sun}
- redshift: 15, 20, 25, 30
- metallicity: zero, 10⁻⁴ Z_{sun} Z_{sun}

• UV background: $J_{21} = 0, 10^{-2}, 10^{-1}$

• dust: yes or no

10⁴ **10**³ Central Density [cm⁻³] **10**² Z = 0.1 Z < 0.1 Z = 1.0 10 1.0 K-M-X-X-X-X-X-X-X-X-X-X **10**-1 **10**-2 20 **40** 80 100 60 0 Time [Myr]

Higher Resolution Simulations

Temperature versus Density

Higher Resolution Simulations

No Fragmentation at a Metallicity of Z=10⁻³ Z_{sun}

Cooling Time vs. Free-fall Time

Cooling Time vs. Free-fall Time

Cooling Time vs. Free-fall Time

Initial Conditions II

- gas partially ionized: $x_e = 10^{-4}$
- initial temperature: 200 K
- DM halo mass: 2 x 10⁶ M_{SUN}
- top-hat approximation, r = 150 pc
- number of gas particles: 10⁵ 10⁶
- resolution limit: 12 M_{SUN} 100 M_{SUN}
- metallicities: $0 < Z < 0.1 Z_{SUN}$

Initial Conditions II: Results

- Bromm et al. 01: critical metallicity due to metal-line cooling in absence of H₂
- our simulations with H₂: no critical metallicity
- H₂ dominant coolant, destroys threshold for fragmentation (Jappsen et al. 07, submitted, arxiv: 0709.3530)

Initial Conditions II: Results

- Bromm et al. 01: critical metallicity due to metal-line cooling in absence of H₂
- our simulations with H₂: no critical metallicity
- H₂ dominant coolant, destroys threshold for fragmentation (Jappsen et al. 07, submitted, arxiv: 0709.3530)

Results and Outlook

- H₂ dominant & most effective coolant, destroys threshold for fragmentation
- For n < 10⁴ cm⁻³: evolution of n and T not changed by metallicity below 10% solar
- We find no metallicity threshold for the two different initial conditions
- Fragmentation due to dust cooling at higher densities?

(Omukai et al. 05, Clark et al. 07)

• What are most appropriate initial conditions?