## Strangulation in Galaxy Groups.

(Kawata & Mulchaey ApJL in press. ArXiv:0707.3814)

Daisuke Kawata
(Carnegie Observatories,

⇒ Mullard Space Science Laboratory,
University College London from Oct.2008)

# Environment effect on star formation of galaxies

"The predominance of early types is a conspicous feature of clusters in general" (Hubble & Humason 1931)



 fraction of passive (lack of SF) galaxies is significantly higher even in small groups than field.



- fraction of passive (lack of SF) galaxies is significantly higher even in small groups than field.
- some mechanism in group environment affects the evolution of galaxies.



#### 3 major mechanisms to stop SF

- mergers/interactions
- ram-pressure stripping
- strangulation





sturburst ⇒ using up the cold gas?



- sturburst ⇒ using up the cold gas?
- starburst + AGN heating
  - ⇒ blowing up the gas?



- sturburst ⇒ using up the cold gas?
- starburst + AGN heating
   ⇒ blowing up the gas?
- later gas accretion from IGM/ICM?



DK & Gibson (2003,2005)

#### self-regulated AGN heating



### ram-pressure stripping



#### ram-pressure stripping

 Ram pressure from ICM or IGM (ρ<sub>ICM</sub>v²) strip the cold gas.



#### ram-pressure stripping

- Ram pressure from ICM or IGM (ρ<sub>ICM</sub>v²) strip the cold gas.
- require high density and high infall velocity = work in cluster, but not in groups?



(Larson et al. 1980)



BVR color + cold gas contors simulated galaxy (Bailin, DK et al. 2005)

(Larson et al. 1980)

 Hot gas is stripped by ICM/IGM.



BVR color + cold gas contors simulated galaxy (Bailin, DK et al. 2005)

(Larson et al. 1980)

- Hot gas is stripped by ICM/IGM.
- galaxies lose the cold gas supply from the hot gas.



BVR color + cold gas contors simulated galaxy (Bailin, DK et al. 2005)

(Larson et al. 1980)

- Hot gas is stripped by ICM/IGM.
- galaxies lose the cold gas supply from the hot gas.
- SF stops when the cold gas is used up.



BVR color + cold gas contors simulated galaxy (Bailin, DK et al. 2005)

(Larson et al. 1980)

- Hot gas is stripped by ICM/IGM.
- galaxies lose the cold gas supply from the hot gas.
- SF stops when the cold gas is used up.



BVR color + cold gas contors simulated galaxy (Bailin, DK et al. 2005)

no self-consistent numerical simulation studies.

# Cosmological Simulation of a group galaxy (M<sub>vir</sub>=8x10<sup>12</sup>M<sub>☉</sub>) formation

Strangulation for a disk galaxy falling into the group

GCD+

3D vector/parallel N-body/SPH code

- 3D vector/parallel N-body/SPH code
- DM and stars: Tree N-body

- 3D vector/parallel N-body/SPH code
- DM and stars: Tree N-body
- Gas: Smoothed Particle Hydrodynamics Radiative Cooling Star Formation SNe feedback Metal Enrichment

 UV background radiation (CUBA, Haardt & Madau 2001)

- UV background radiation (CUBA, Haardt & Madau 2001)
- non-equilibrium chemical evolution of e<sup>-</sup>,H,H
   +,He,He<sup>+</sup>,He,H<sup>-</sup>
   (Abel et al. 1997)

- UV background radiation (CUBA, Haardt & Madau 2001)
- non-equilibrium chemical evolution of e<sup>-</sup>,H,H
   +,He,He<sup>+</sup>,He,H<sup>-</sup>
   (Abel et al. 1997)
- equilibrium metal cooling (Cen et al. 1995)

Star Formation: SFR∝ρ<sup>1.5</sup>
 if n<sub>H</sub>>0.01cm<sup>-3</sup>, ∇·V<0, t<sub>c</sub><t<sub>dyn</sub>
 Salpeter IMF

- Star Formation: SFR∝ρ<sup>1.5</sup>
   if n<sub>H</sub>>0.01cm<sup>-3</sup>, ∇·V<0, t<sub>c</sub><t<sub>dyn</sub>
   Salpeter IMF
- SNe feedback: energy and metals both SNe II and SNe Ia

- Star Formation: SFR∝ρ<sup>1.5</sup>
   if n<sub>H</sub>>0.01cm<sup>-3</sup>, ∇·V<0, t<sub>c</sub><t<sub>dyn</sub>
   Salpeter IMF
- SNe feedback: energy and metals both SNe II and SNe Ia
- Metal Enrichment from SNe II and I, mass loss from intermediate mass stars (m<8M<sub>☉</sub>) H,He,C,N,O,Ne,Mg,Si and Fe

# Cosmological Simulation of a group galaxy formation

# Cosmological Simulation of a group galaxy formation

3yr WMAP cosmology

# Cosmological Simulation of a group galaxy formation

- 3yr WMAP cosmology
- $M_{vir} = 8 \times 10^{12} M_{\odot}$

# Cosmological Simulation of a group galaxy formation

- 3yr WMAP cosmology
- $M_{vir} = 8 \times 10^{12} M_{\odot}$
- $m_g=4x10^6$  M $_{\odot}$ ,  $\epsilon_g=0.96$  kpc  $m_{DM}=2x10^7$  M $_{\odot}$ ,  $\epsilon_g=1.61$  kpc







 the galaxy falls into the group around z=0.3.



- the galaxy falls into the group around z=0.3.
- gas accretion stops around z=0.26.



- the galaxy falls into the group around z=0.3.
- gas accretion stops around z=0.26.
- SF stops around z=0.1.



#### a disk galaxy with Vrot~150 km/s



#### a disk galaxy with Vrot~150 km/s



cold gas stripping after the galaxy infalled?

### Ram pressure is not strong enough to strip the cold gas, but enough for the hot gas.

z = 0.26



## Ram pressure is not strong enough to strip the cold gas, but enough for the hot gas.





No cold gas is stripped.



- No cold gas is stripped.
- 90 % of the hot gas is stripped.



- No cold gas is stripped.
- 90 % of the hot gas is stripped.
- the new supply of the cold gas from the hot gas is cut-off.
  - ⇒ SF stops when the cold gas is used up.



- No cold gas is stripped.
- 90 % of the hot gas is stripped.
- the new supply of the cold gas from the hot gas is cut-off.
  - ⇒ SF stops when the cold gas is used up.
- Strangulation!



groups are more common environment than clusters.

- groups are more common environment than clusters.
- How does the remnant galaxy look like? S0?

- groups are more common environment than clusters.
- How does the remnant galaxy look like? S0?
- How strangulation depends on the group and galaxy's mass and the infall orbits?







NGC 2300 group (NOAO)





NGC 2276: Chandra X-ray image + VLA 1.49 GHz contors



NGC 2276: Chandra X-ray image + VLA 1.49 GHz contors

(Rasmussen, Ponman, & Mulchaey 2006)



Even small groups can affect the evolution of member galaxies!

NGC 2276: Chandra X-ray image + VLA 1.49 GHz contors