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Small scale Small scale vsvs large scalelarge scale

• Conversion by –u.(JxB)
• Small scale dynamo

– if Rm > Rm,crit

• Large scale dynamo
– if D > Dcrit
– α2 and αΩ dynamos
– WxJ dynamo (only shear)
– Incoherent alpha-shear dynamo

0== Bu

0≠B
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MHD equations (isothermal)MHD equations (isothermal)
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Induction Equation in suitable form for SPH Induction Equation in suitable form for SPH 
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Vector potentialVector potential
• B=curlA,  advantage: divB=0
• J=curlB=curl(curlA) =curl2A
• Not a disadvantage: consider Alfven waves
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Comparison of A and B methodsComparison of A and B methods
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Nearly potential flowsNearly potential flows

No dynamo action
in nearly potential
flows (at least not
fo far)
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Nearly potential flowsNearly potential flows
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Does compressibility affect the dynamo?Does compressibility affect the dynamo?

Direct simulation, ν/η=5 Direct and shock-capturing 
simulations, ν/η=1

Shocks sweep up all the field: dynamo harder?
-- or artifact of shock diffusion?

Bimodal behavior!ψ×∇+∇= φu
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Div Div uu and effect on and effect on BB
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256 processor run at 1024256 processor run at 102433
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Direct vs hyperDirect vs hyper at 512at 51233

With
hyperdiffusivity

Normal
diffusivity

Biskamp & Müller (2000, Phys Fluids 7, 4889)

u2∇ν
u4

4∇−ν
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TurbulenceTurbulence at 1024at 102433

(Porter, Pouquet,& Woodward 1998)
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Ideal hydroIdeal hydro: should we be worried?: should we be worried?

• Why this k-1 tail in the power spectrum?
– Compressibility?
– PPM method
– Or is real??

• Hyperviscosity destroys entire inertial range?
– Can we trust any ideal method?

• Needed to wait for 40963 direct simulations
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HyperviscousHyperviscous, , SmagorinskySmagorinsky, normal, normal
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Bottleneck effect: Bottleneck effect: 1D 1D vsvs 3D3D spectraspectra

Compensated 
spectra

(1D vs 3D)

Why did wind tunnels not show this?
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Relation to Relation to ‘‘laboratorylaboratory’’ 1D spectra1D spectra
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Small scale dynamo actionSmall scale dynamo action

PrM=ν/η=1

non-helically
forced turbulence

PrM=ν/η=50
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Decaying fully helical turbulenceDecaying fully helical turbulence

Initial slope
E~k4

Christensson et al.
(2001, PRE 64, 056405)

helical vs
nonhelical
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Pencil CodePencil Code
• Started in Sept. 2001 with Wolfgang Dobler
• High order (6th order in space, 3rd order in time)
• Cache & memory efficient
• MPI, can run PacxMPI (across countries!)
• Maintained/developed by ~20 people (CVS!)
• Automatic validation (over night or any time)
• Max resolution so far 10243 , 256 procs

• Isotropic turbulence
– MHD, passive scl, CR

• Stratified layers
– Convection, radiation (gray)

• Shearing box
– MRI, dust, interstellar

• Sphere embedded in box
– Fully convective stars
– geodynamo

• Other applications
– Homochirality
– Spherical coordinates
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Wallclock time versus processor #

nearly linear
Scaling

100 Mb/s shows
limitations

1 - 10 Gb/s
no limitation
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MRI turbulenceMRI turbulence
MRI = MRI = magnetorotationalmagnetorotational instabilityinstability

2563

w/o hypervisc.
t = 600 = 20 orbits

5123

w/o hypervisc.
Δt = 60 = 2 orbits
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Ma=10 supersonic turbulenceMa=10 supersonic turbulence
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ConclusionsConclusions
• Vector potential useful for MHD simulations
• No dynamo action in nearly potential flow
• Small scale dynamo cares about solenoidal

part of the flow, not the potential part
• Bottleneck effect is real, and it affects the 

small-scale dynamo

1046 Mx2/cycle
(for the sun)
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