Star Formation in Field Galaxies since z=1

A quiescent, mass-dependent history

Kai Noeske, CfA

KITP, 18 Sept 2007

... and thanks so much for inviting!!!

Star formation since z~1

Co-moving star formation rate density declined by ~x10

proposed: driven by increase of glaxy merger rate with z

Bell et al. 2005

Mass dependence:

massive galaxies formed bulk of stellar and early, less massive galaxies formed on longer timescales

Understanding star formation on galaxywide scales

(evolution of light and chemistry in the Universe, illuminates DM, the evolution of clustering, cosmology, etc.)

Theory:

- no complete understanding on small scales,
- gas dynamics: cooling/accretion, feedback, winds, ...
- CPU /resolution limits in 'true' cosmological simulations
 - semi-empirical treatment (Schmidt Law or similar); efficiency, feedback, timescales, etc. at z>>0?

Observations:

rapidly improving, but still no comprehensive picture at z>>0: Starbursts? Mass dependence?

II. New deep multiwavelength surveys: a more complete view

The All-Wavelength Extended Groth Strip International Survey

- DEEP2:Keck /DEIMOS spectra: ~10,000 precision redshifts, galaxy kinematics
- HST V,I (700 sq arcmin-2xGOODS)
- Very deep:
 - Spitzer (IRAC, MIPS)
 - GALEX (NUV, FUV)
 - Chandra ACIS
 - VLA 20cm
- Ground-based deep U- to K-imaging
- aegis.ucolick.org
- Release Aug 2007,
 ApJ special issue & press releases out

A more detailed view of star formation properties

- 1) Fiducial <u>star-forming</u> galaxies:
 - $24\mu m$ sources, or blue emission line galaxies (~2/3 of sample)
 - 2) Galaxies not detected in $24\mu m$ or emission lines:

red sequence, early-types not significantly starforming

 $(\sim 1/3 \text{ of sample})$

3) Galaxies with no detection in 24µm, but weak emission lines: red sequence, 2/3 early-types large fraction LINERs/AGN; (<20% of sample)

III. The "Main Sequence" of starforming galaxies

and how it tells us how SF mostly happened

"Main Sequence" of star-forming galaxies

The majority of star-forming galaxies form a defined sequence with a limited range of SFR at a given stellar mass and redshift. SFR $\sim \pm 0.3$ dex (1σ)

"Normal" star-forming galaxies,

- prior to quenching of star formation - ?

"Main Sequence" found to z>~1 for different tracers of SFR, stellar mass larger mass range

1) Limit on the amplitude of SFR variations/starbursts:

Galaxies are 2/3 of the time within a factor of ~2 of their average SFR at that z

1) Limit on the amplitude of SFR variations/starbursts:

Galaxies are 2/3 of the time within a factor of ~2 of their average SFR at that z (limit to effect of mergers on SFR, constrains feedback in simulations)

1) Limit on the amplitude of SFR variations/starbursts:

Galaxies are 2/3 of the time within a factor of ~2 of their average SFR at that z (® limit to effect of mergers on SF)

2) Range of log(SFR) constant to $z\sim1$,

MS ZP evolves with z:

dominant mode of SF since $z\sim1$ is apparently a gradual decrease of SFR, not evolving role of starbursts

1) Limit on the amplitude of SFR variations/starbursts:

Galaxies are 2/3 of the time within a factor of ~ 2 of their average SFR at that z (® limit to effect of mergers on SF)

2) Range of log(SFR) constant to z~1: dominant mode of SF since z~1 is apparently a gradual decrease of SFR, not evolving role of starbursts

3) LIRGs at z~1 are massive galaxies in their normal high SFR, not strong starbursts like local LIRGs

IV. Size matters: mass dependence of SF histories

big galaxies

iver 1998) small galaxies

Assumption of old age for all galaxies: $t_d \!<\! <\! t_{Univ}$, simultaneous starbursts for >50% of galaxies at $<\! 10^{10} M_{\odot}$, z=1

Implausible, and inconsistent with gradual decline of SFR

only alternative: delayed onset of major star formation in part of less massive galaxies: t_d ~ t_{Univ}

New concept:

"Staged galaxy formation":

less massive galaxies start major SF on average later, with $z_{\rm f}$ more broadly distributed from high to low z

Today's low-mass galaxies (<10dex Msun at z=0) had only a small fraction of today's stellar mass at z~1 -> late onset of major star formation

V. A parametrization model

What drives the dominant gradual decline of SFR since z~1?

Gradual processes like gas exhaustion?

A simple model to parametrize the massdependent evolution of SFR along the star-forming sequence

Staged τ models: both τ and z_f mass-dependent

works

consistent, but no proof of, a gas depletion scenario

Summary:

(NOTE: star-forming field galaxies)

- 1) Main Sequence of SF galaxies, limited range of SFR at a given M,z.
- 2) Limits amplitude of starbursts, merger effects on SFR.
- 3) Gradual decline of SF, not starbursts, dominant since z~1;
- 4)LIRGs at z~1 are mostly normal SF galaxies, not extreme starbursts
 - New picture: high SFR often not brief starbursts, but early, gas-rich phase of a galaxy -
- 3) mass-dependent τ models: model of SFR vs M, z over 2/3 t_H
- 4) New scenario: less massive galaxies have longer SF timescales, and a delayed onset of major star formation
 - \rightarrow 2 effects contributing to "downsizing": $\tau(M)$, $z_f(M)$

A new perspective to further our understanding of star formation:

Prior to quenching, star formation out ot z>1 follows a regular pattern

- 1) dominance of the same set of few physical processes?
- 3) A chance to identify the relevant physics
- 4) knowing normal SF: isolate effects of mergers, and quenching

Outlook (1): a new benchmark survey for SF, AGN, environments to z>1.5

GOODS, AEGIS: ~20,000 galaxies MIPS Legacy survey (t_{exp} x12!) (in progress, PI M. Dickinson): deep 24 and 70 μ m, robust SFR to z>2, and to low SFR at z<1 DEEP3 (4+ yr, KeckII/DEIMOS), proposed Faber/Noeske

Data vs Semi-Analytic Models: GOODS & Millenium

