Kinematics of molecular cloud cores in driven and decaying turbulence: Comparison with Observations

Stella Offner

UC Berkeley KITP 11/16/07

Collaborators: Mark Krumholz, Chris McKee, Richard Klein

Outline

- Simulations
- Post-processing
- Kinematic information
 - Core velocity dispersions (2nd moments)
 - Core centroid velocities (1st moments)
 - Dispersion of the centroids
- Observational comparisons

Simulations

- 3D isothermal hydrodynamic AMR with self-gravity
- Effective resolution of 2048³
- Mach=5, k=3..4
- Sink particles
- T=20K, M=1150Msun, L=2pc
- Initialization: drive turbulence for 2t_c without self-gravity
- Compare statistics at 1t_{ff} for two cases:
 - Continually driven: Mach number is constant, α ~1
 - "Decaying": turbulent driving is halted

Simulations

1t_{ff}: "Observed" at a distance of 150 pc with beam size of 26"

Observational Metrics

Doug Johnstone

Observational Surveys Provide

Significant Statistical Information.

Clump mass and size distribution - large scales

Core mass and size distribution - small scales

Core locations - environment and clustering

Structure - filamentary, elipticity, directionality

Frequency of protostellar stages - Class -I, O, I, II, III

Kinematic Information - CO and N₂H+ widths, dist'n

Polarization Angle - Magnetic Field Orientation

Reasonable theories must reproduce each of these conditions!

Observational Metrics

Doug Johnstone

Recent papers:

Andre et al. 2007

p Ophiuchus

Kirk et al. 2007

Perseus

Rosolowsky et al.

2007

Perseus

Observational Surveys Provide

Significant Statistical Information.

Clump mass and size distribution - large scales

Core mass and size distribution - small scales

Core locations - environment and clustering

Structure - filamentary, elipticity, directionality

Frequency of protostellar stages - Class -I, O, I, II, III

Kinematic Information - CO and N₂H+ widths, dist'n

Polarization Angle - Magnetic Field Orientation

Reasonable theories must reproduce each of these conditions!

Radiative post-processing

- Dust continuum map:
 - domain is optically thin at 1mm
 - dust intensity is proportional to the column density
 - convolve the column density map with appropriate beam size
 - identify cores as local maxima in this map
- Molecular line observations:
 - consider the tracers C¹⁸O, N₂H⁺, NH₃
 - mostly optically thin in low mass star-forming regions
 - assume gas is in statistical equilibrium
 - radiative pumping is negligible (except for excitation and de-excitation from the CMB)
 - calculate the emergent intensity in each pixel in each velocity channel
 - Compute the channel-averaged specific intensity along each line of sight
 - Smear the data for the beamsize and generate a PPV cube
- Depletion model:
 - adopt an abundance, χ , and depletion cutoff, above which $\chi=0$
 - e.g C¹⁸O, $\chi = 10^{-7}$ mol/H₂ with depletion at $n_{H2} = 5 \times 10^4$ cm⁻³

Velocity Dispersions: 2nd Moments

□ N₂H+:

- Prestellar subsonic 2nd moments
- Protostellar transonic 2nd moments

		Decaying	5		Driven	
	All	Prestellar	Protostellar	All	Prestellar	Protostellar
$N_{\rm cores}$	109	55	54	214	122	92
Median $\sigma_{\rm NT}/c_{\rm s}$	1.0	0.6	2.9	1.1	0.9	2.1
Mean $\sigma_{ m NT}/c_{ m s}$	2.2	0.6	3.8	1.8	1.2	2.7

Centroid Velocities: 1st Moments

$-N_2H^+$:

- Normalize to the gas dispersion (Decaying, V_{vir}=2.1c_s; Driven, V_{vir}=4.9c_s)
- Sub-virial dispersion of centroids

Centroid Velocities: 1st Moments

- N_2H^+ :
 - Normalize to the gas dispersion (Decaying, $V_{vir}=2.1c_s$; Driven, $V_{vir}=4.9c_s$)
 - Sub-virial dispersion of centroids

Core Envelope Dispersions

Prestellar

Individual core velocity dispersion map with density contours.

Protostellar

- Upper plot:
 - No infall, sub-sonic interior
 - Highest velocity gas is in the envelope
- Lower plot:
 - Strong supersonic infall
 - Envelope is transonic

Core Envelope Dispersions

- Prestellar cores are "coherent"
- Prestellar cores have sonic to transonic envelopes
- C¹⁸O traces lower density gas around the core, which is distinct from infall or regional gas dispersion.

0.10

- Protostellar cores have larger envelope dispersions (transonic-supersonic), in part due to infalling gas.
- Decaying protostellar cores have strongly increasing dispersion with decreasing radius.

Observed Regions

ρ Ophiuchus:

A ~ 1pc x 1pc

 $n_H \sim 2.2 \times 10^4 \text{ cm}^{-3}$

D ~ 150 pc

M ~ 550 Msun

1.1mm Bolocam map (Young et al. 2006)

Perseus: A ~ 5pc x 25pc n_H ~ 1.5 x 10^3 cm⁻³ D ~ 260 pc M ~ 18,500 Msun 2-MASS extinction map (Kirk et al. 2007

KS Tests

- Andre et al. 2007 (A07): ρ Oph, N₂H⁺, starless
- Kirk et al. 2007 (K07): Perseus, N₂H⁺, starless, protostellar
- Rosolowsky et al. 2007 (R07): Perseus, NH₃, starless + protostellar

All	D		U	
K07	10%	6	109	%
R07	1e-1	%	1e-2	%
Starl	ess	D	Ţ	J
A0'	7	1 %	7	%
K0'	7	3%	51	%
rotost	ellar	Γ)	U
K0'	7	62	%	29

All	D	U	
K07	$1x10^{-3}\%$	$8x10^{-4}$	
R07	1%		
Starless	D	U	
A07	$5x10^{-2}\%$	25%	
K07	2%	$2x10^{-2}$ %	
Protos	tellar	D U	
K0	7 2x1	0-4%	

Summary

2nd Moments

- Both simulations find sonic prestellar 2nd moments
- Decaying simulation has supersonic protostellar 2nd moments, while the driven simulation has ~transonic 2nd moments

1st Moments

- The simulation distributions are statistically similar
- Both simulations are slightly sub-virial
- Driven simulation has ~ virial prestellar 1st moments, while the decaying simulation has ~ virial protostellar 1st moments
- Both simulations and observations are statistically similar

Core envelopes

- Both simulations have coherent prestellar cores
- Driven simulation has transonic protostellar envelopes that are flat with radius;
 Decaying simulation has supersonic protostellar envelopes that increase with decreasing radius
- Driven simulations are a better fit to observations of core envelopes