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Outline

= Simulations

. Post-processing

= Kinematic information

S Core velocity dispersions (2nd moments)

= Core centroid velocities (1st moments)
= Dispersion of the centroids

2rvational comparisons
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Simulations

3D 1sothermal hydrodynamic AMR with self-gravity
= Effective resolution of 20483
ach=5, k:3 4

3

1—5  M=1150Msun, L=2pc

.

=Eompa statlstlcs at 1t.. for two cases:

meontinually driven: Mach number iIs constant,a~1
scaying”: turbulent driving is halted



Simulations

~0.18 0
X [ pe ]
BiEeaying Driven

1t “Observ__  at a distance of 150 pc with beam size of 26"




Observational Metrics

Doug Johnstone

Observational Surveys Provide

Significant Statistical Information.®
Clump mass and size distribution - large scales
Core mass and size distribution - small scales
Core locations - environment and clustering
Structure - filamentary, ei?pficify,‘diréc'ﬁonali‘fy
‘Frequency of protostellar stages'- Class -1,°0, I, II, III
Kinematic Information'- CO'and N H* widths, dist'n

Polarization Angle - Magnetic Field Orientafion

Reasonable theories h'uusf'repr.oduc'e edch of these conditions!
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Observational Metrics

Doug Johnstone

Recent papers: B8 Observational Surveys. Provide

i‘\.

AREEe et al. 2007
®Ophiuchus

Niietal. 2007

_-Significant Statistical Information.”

Clump mass and size distribution - large scales

Persel Core mass and size distribution - small scales
ROSO{OWSK et al. Core locations - environment and clustering
2007 Structure - filamentary, elipticity, directionality

SEISEUS ‘Frequency of protostellar. stages'- Class -I,70, 1, 11, III
Kinematic Information'- CO'and N H* widths, dist'n

Polarization Angle - Magnetic Field Orientafion

Reasonable theories h'uusf'repr.oduc'e edch of these conditions!
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Radiative post-processing

Dust continuum map:
= domain is optically thin at 1mm
= dust intensity Is proportional to the column density
= convolve the column density map with appropriate beam size
= dentify cores as local maxima in this map

Molecular line observations:
= consider the tracers C'80, N,H*, NH,
" mostly optically thin in low mass star-forming regions
assume gas is in statistical equilibrium
- radiative pumping is negligible (except for excitation and de-excitation

L Dejpleiien moQ
ERaelopt an kbun_ %, and depletion cutoff, above which y=0
= 10-“mol/H, with depletion at n,,, = 5x10%cm3



ty Dispersions: 2nd Moments
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entroid Velocities: 1st Moments
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Centroid Velocities: 1st Moments

Prestellar, Decaying Prestellar, Driven

Protostellar, Driven
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Nefmealize to the gas dispersion (Decaying, V,;=2.1c,; Driven, V,;=4.9c,)
B Sub-virial dispersion of centroids



Prestellar
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Core Envelope Dispersions

Individual core velocity dispersion
map with density contours.
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. - ‘e = C!80 traces lower density gas around the core, which is distinct
LA S from infall or regional gas dispersion.
f 3 y [ SEnd . - -
L ¢ 1 A% f‘; 1 s L = Protostellar cores have larger envelope dispersions (transonic-
" " 15 10 0 supersonic), in part due to infalling gas.
oo IS P I Decaying protostellar cores have strongly increasing dispersion
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200 o André, Pety,
e larcsec)  Bacmann, in prep.




Observed Regions

o Ophiuchus:

A~ 1pcx 1pc
n,~ 2.2 x104cm?3
D ~ 150 pc

M ~ 550 Msun

F_
Diph-Pe % §
s

2-MASS extinction map (Kirk et al. 2007




KS Tests

Andre et al. 2007 (AQ7): p Oph, N,H", starless
- Kirk et al. 2007 (K07): Perseus, N,H*, starless, protostellar
~ Rosolowsky et al. 2007 (RO7): Perseus, NH,, starless + protostellar

1st moments 2nd moments

All [ U All D U

K0T 10%  10% K07 1x107% 8x10~*

ROT  le-1% 1le-2% RO7T 1%

Starless D U Starless D U
ADT 1% 7% AOT Sx10 4% 25%
K07 3% 51% K07 2% 2x102%

protostellar D U Protostellar D U

KOT 62%  20% Ko7 2x10—49%



Summary

- 2nd Moments
~ = Both simulations find sonic prestellar 2nd moments
= Decaying simulation has supersonic protostellar 2nd moments, while the
driven simulation has ~transonic 2nd moments
1st Moments
= The simulation distributions are statistically similar
~ Both simulations are slightly sub-virial

Driven simulation has ~ virial prestellar 1st moments, while the decaying simulation
‘has ~ virial protostellar 1st moments

Bath simulations and observations are statistically similar

Driven simulation has transonic protostellar envelopes that are flat with radius;
BIECayIng simulation has supersonic protostellar envelopes that increase with
WECIEasIng radius

DIV s[mulé_ are a better fit to observations of core envelopes
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