Star07 @ KITP (28 Aug 2007)

The role of dust in metal-poor star formation

Kazu Omukai (NAOJ & KITP)

Collaborators: Toru Tsuribe (Osaka U.)

Raffaella Schneider (Arcetri)

Andrea Ferrara (SISSA)

Outline

- Thermal evolution of low-Z gas
- The critical Z for low-mass star formation
- Origin of cutoff at in MDF

+

first-star binary formation

Mass of primordial-gas dense core

Yoshida et al. in prep.

Fragmentation of turbulent cloud

Assumed EOS

- Vigorous fragmentation for γ <1, fragmentation suppressed for γ >1
- Characteristic mass ~
 Jeans mass at temperature minimum

(Jappsen et al. 2005)

At the time 50% of mass is accreted

Fragmentation and thermal evolution

γ=dlog p/dlogp

If $\gamma > \gamma_{crit}$, the collapse stops

sheet: $\gamma_{crit} = 0$

filament: $\gamma_{crit} = 1$

sphere: $\gamma_{crit} = 4/3$

Initially the cloud takes complicated shape. Before the fragmentation, it is filamentary. As a thumb rule,

Fragmetation occurs while $\gamma < 1$, and stops while $\gamma > 1$

Thermal Evolution of clouds with different Z

- 1) Cooling by dust thermal emission: [Z/H] > -5
- 2) H_2 formation on dust : [Z/H] > -4
- 3) Cooling by metal lines: [Z/H] > -3

K.O., Tsuribe, Schneider & Ferrara (2005)

How much is the critical metallicity (gas-dust ratio) by dust cooling?

Dust-induced fragmentation

Tsuribe & K.O. (2006)

- With gas-dust ratio Z>~10⁻⁶Z_{sun} (first dust: smaller grains)
 - →low-mass fragments by dust cooling

Standard dust $Z_{cr} \sim 10^{-6} \text{--} 10^{-5} Z_{sun}$ First dust

If there were no dust...

No Dust Cases

- With only metal-line cooling, T increases for n>~108cm⁻³
- Fragmentation mass ~10-100M_{sun}
- Tor low-mass star formation

Cutoff at [Z/H]~-4 in stellar metallicity distribution function

- Several 100 of EMP stars
- Only three HMP or UMP stars: all C, O enhanced with [Z/H]>-4
 - → Sharp cutoff at [Z/H]~-4
- Even if C,O in HMP stars are a posteriori
 (e.g., accretion from a binary companion),
 scarcity of UMP stars remains a mystery.
 ("metallicity desert")

Cases of [Z/H] = -5.5, -3.5

[Z/H] = -5.5

- Long filament formation during dust-cooling phase
 - → fragmentation

Case of [Z/H] ~-5...-4

Tsuribe & K.O. (2007) in prep.

[Z/H]=-4.5, first dust

- Sudden H₂ formation heating
 - → very spherical hydrostatic core
- No fragmentation in the dustcooling phase

Why sudden heating only at [Z/H]~-4.5?

Temperature evolution

- 3-body reaction n>108cm⁻³
- At [Z/H]~-5.5, temperature is already high and heating is not so remarkable.
- At [Z/H] ~-3.5, H₂ formation is almost completed by dust reaction before 3 body reaction starts.
- At [Z/H]~-4.5, 3-body reaction starts at low-temperature. This results in sudden heating.
- → fragment mass ~ 10-100M_{sun}

Summary of low-metallicity SF

- Dust is indispensable for low mass SF
- Critical metallicity for low-mass SF $Z_{cr} \sim 10^{-6}Z_{sun}$ (first dust)
- \sim H₂ formation heating prevents low-mass SF in [Z/H]=-5..-4

Dust nature in the early universe is quite uncertain.

First-star binary formation

Machida, K.O., Matsumoto, Inutsuka in prep.

- ➤ Uses barotropic relation p=p(n)
- >initial cores:
 - >BE sphere (10^3 cm⁻³) density x 1.01 (α_0 =0.83)
 - \triangleright Rotation β_0
 - ► Perturbation (bar $A_{\phi} + m=3$)

All the cores with $\beta_0 > 10^{-6} - 10^{-5}$ fragment

Core fragmenting by ring mode: model 6

Thin disk forms during the collapse

fragments to binary

Non-fragmenting core: model 22

Thin disk not formed before stellar core formation