Formation of GMCs

Eve Ostriker University of Maryland

Observational constraints

- All of contemporary SF is in GMCs
- Most of mass in GMCs is in M>10⁵ M_{\odot} clouds
- Column density within a given GMC: Σ_{cl} ~200 M_{\odot} pc⁻², corresp. N~10²²cm⁻²
- Lifetimes of GMCs ~ 20-30 Myr based on GMC/star cluster association stats
- Most GMCs of all masses contain stars
 ⇒ SF is rapid once GMC forms

How are GMCs formed?

• Bottom-up: pairwise coagulation starting from cold HI clouds (~ $10^3 M_{\odot}$) in region of size

$$R_{gather} = 190 \text{pc} \left(\frac{M_6}{\overline{n}_1}\right)^{1/3}$$

• Binary collision time:

$$t_{collis} = \frac{\sqrt{\pi}}{3} \left(\frac{\rho_{cl}}{\overline{\rho}}\right)^{2/3} \frac{R_{gather}}{\sigma} = \frac{\sqrt{\pi}}{4} \frac{\Sigma_{cl}}{\overline{\rho}\sigma} \approx 5 \times 10^8 \,\mathrm{yr} \,\frac{\Sigma_{cl,200}}{n_1}$$

• nb: gravitational focusing reduction factor $\left(1 + \frac{\pi G R_{cl} \Sigma_{cl}}{\sigma^2}\right)^{-1}$

is ~1 for M<10⁵
$$M_{\odot}$$

8/16/07

Bottom-up formation: slow!

- Total coagulation time = $log_2(M_{final}/M_{init})$ t_{collis} is >> t_{GMC} unless ISM (n)~100 cm⁻³ ~ n_{GMC}
- Slow bottom-up formation appears inconsistent with GMC lifetimes/ destruction by HII regions
- Possible exception: galactic center regions, with large (n)

Top-down: converging flow

• One-dimensional converging flow:

$$t_{accum} = \frac{\Sigma_{cl}}{\overline{\rho}v_{rel}} \approx 3 \times 10^8 \,\mathrm{yr} \,\,\frac{\Sigma_{c1,200}}{n_1 v_{rel,20}}$$

is time to accumulate total surface density $\Sigma_{\rm cl}$ of shocked gas in stagnation region

• Problem: correlated flow cannot be maintained for long enough time to reach observed $\Sigma_{\rm cl}$ unless background (n) is large

Top-down: Parker Instability

- Driven by magnetic buoyancy in background gravitational field from gas and stars; matter slides along field lines to collect in magnetic valleys
- Range of azimuthal wavelengths near $\lambda_y \sim 2\pi H \rightarrow 2$ kpc; initial growth rate $\sim v_A/H \Rightarrow t \sim 10^7$ yr
- Preference for long vertical wavelength (no nodes)

Refs: Parker 1966, 1967 Shu 1974 Mouschovias et al 1974 Hanawa et al 1992 Giz & Shu 1993 J.Kim & Hong 1998 Chou et al 2000

Nonlinear Parker mode with rotation and shear

- Only moderate density enhancement (ρ_{max} =1.75 ρ_0) at early times (self-limiting instability)
- Shear smears out density fluctuations at late times

Top-down: self-gravitating instability

Key physical timescales:

- Shear
$$t_{shear} = \frac{1}{q\Omega} = 0.5 \times 10^8 \,\mathrm{yrs} \,\frac{1}{q} \left(\frac{R}{10 \,\mathrm{kpc}}\right) \left(\frac{V_c}{200 \,\mathrm{kms^{-1}}}\right)^{-1}$$

- Epicyclic motion

$$t_{epi} = \frac{2\pi}{\kappa} = 2.2 \times 10^8 \,\mathrm{yrs} \left(\frac{\mathrm{R}}{10 \,\mathrm{kpc}}\right) \left(\frac{V_c}{200 \mathrm{kms}^{-1}}\right)^{-1}$$
- Self-gravity

$$t_{grav} = \left(\frac{\lambda}{G\Sigma}\right)^{1/2} = 1.5 \times 10^8 \,\mathrm{yrs} \left(\frac{\lambda}{\mathrm{kpc}}\right)^{1/2} \left(\frac{\Sigma}{10 \mathrm{M}_{\Theta} p c^{-2}}\right)^{-1/2}$$

- Thermal pressure

$$t_s = \frac{\lambda}{c_s} = 1.4 \times 10^8 \,\mathrm{yrs} \left(\frac{\lambda}{\mathrm{kpc}}\right) \left(\frac{c_s}{7\mathrm{kms}^{-1}}\right)^{-1}$$

8/16/07

Large-scale dynamics with shear

For moderate-scale ISM dynamics (L>H), must include background sheared rotation. May consider a local patch of the disk:

be used when spiral arms are present (Roberts 1969)

Swing amplifier

Growth occurs due to cooperation of epicyclic motion, shear, self-gravity

- Need low $Q \equiv \kappa c_s / \pi G \Sigma$ for significant growth

$$Q = 1.5 \left(\frac{c_s}{7 \, km s^{-1}}\right) \left(\frac{V_c}{200 \, km s^{-1}}\right) \left(\frac{R}{10 \, kpc}\right)^{-1} \left(\frac{\Sigma_{gal}}{10 \, M_{\Theta} \, pc^{-2}}\right)^{-1}$$

Results from **3D** simulations

- Thresholds for nonlinear instability:
 - Q_{th} <1 unmagnetized case
 - Q_{th}~1 strongly magnetized case
 - Q_{th}~1.6 for weakly magnetized cases (MRI unstable)
- − Characteristic $M \sim M_J \Rightarrow \sim 10^7 M_{\odot}$

Unmagnetized model: *Q*=0.7 *MRI decreases surface density required for gravitational instability by >50%*

Weakly-magnetized (MRI) model: Q=1.5, $\beta_0 = 100$

Kim, Ostriker, & Stone (2002, 2003)

Jeans scales in disk

• 2D Jeans length in gas is

 $L_J = c_s^2/G\Sigma_g = 1.1 \text{ kpc} (c_s/7 \text{ km s}^{-1})^2 (10 \text{ M}_{\odot} \text{ pc}^{-2}/\Sigma_g)$

2D Jeans time is

 $t_J = c_s / G \Sigma_g = 1.6 \times 10^8 \text{ yrs} (c_s / 7 \text{ km} \text{ s}^{-1}) (10 \text{ M}_{\odot} \text{ pc}^{-2} / \Sigma_g)$

• 2D Jeans mass is

 $M_{\rm J} = L_{\rm J}^2 \Sigma_{\rm g} = 1.3 \times 10^7 \, M_{\odot} \, (c_{\rm s}^{-7} \, {\rm km \, s^{-1}})^4 \, (10 \, M_{\odot} \, {\rm pc}^{-2} / \Sigma_{\rm g})$

"Swing" in thick disk including stars

- Nozero disk thickness stabilizes
- Stellar disk destabilizes
- Critical Q ≈1.4 for clump formation

Non-axisymmetric

Kim & Ostriker (2007)

With spiral structure...

- Jeans mass and Jeans time lower in spiral arms, due to galactic shock
- Self-gravity leads to growth of spiral-arm spurs
- GMCs form in arm if shock is strong
- GMCs form downstream if shock is weaker
- Clump masses in the range 10⁶-10⁷ M_☉

Kim & Ostriker (2002)

Open questions...

- How does gravitational instability develop in multiphase medium?
- Can a single (meaningful) c_{eff} be defined that incorporates turbulence (δv , δB) to yield $t_J = c_{eff}/(G \Sigma)$ and $L_J = c_{eff}^2/(G\Sigma)$?
- Are magnetic fields stabilizing or destabilizing in net?
- How do massive clouds (GMAs) fragment into GMCs as they form?
- Does pre-existing cloudy structure matter?
- How does feedback affect the range of masses that result, and net SF efficiencies?

- e.g. if $t_{destroy} > t_{form}$, is this a starburst?

8/16/07