Test Problems

Problems we will all have to address to understand star formation computationally: *Turbulence, Magnetic Field, Sink Particles, Radiative Transfer*

Goal for workshop and paper:

- Code comparison tests
- Key science questions

Practical Goal: Decide by Wednesday night what to include in the paper.

Workshop structure:

10:00 - 10:20: We set the daily agenda

12:00 - 13:00: Main presentation/discussion

3:30-4:30: Comparison of results

There are IDL and Fortran tools available. See the page "Reporting" in the wiki for details: http://kitpstarformation07.wikispaces.com/Test+Problem+Reporting

For 256³ IDL is tolerable (minutes per snapshot analyzed), but starting at 512³ you should use Fortran procedures available (precompiled) at **datastar** (part of the CADAC setup at SDSC)

Please *convert your output to the original format* (raw binary):

- Direct use of tools
- Easier sharing of the output from different codes

Reminders: Upload to CADAC; Visualization tools

Daily Topics

Monday (Kritsuk, Padoan):

- Power spectra
- PDFs
- Structure Functions
- Images

Tuesday (Krumholz, Nordlund):

- Clumpfind
- Sink Particles
- Radiative Transfer

Wednesday (Brandenburg, Price):

- Turbulent Dynamos
- MHD in SPH
- Visualization Demos

Monday's Assignment

Power Spectra:

- Average power spectra of ux,uy,uz (use IDL tool or Fortran binaries)
- Make plots compensated by k², one per snapshot
- Power spectra of ux,y,z, rho^{1/3} ux,y,z, rho^{1/2} ux,y,z, rho, ln(rho), Bx,y,z (use Fortran tool)
- Power spectra of decomposed velocity field (solenoidal and compressible)

Science: Link to fragmentation (IMF slope) --> Tuesday
Comparison with observations
Physics of turbulence (supersonic cascade, Ec/Es, bottleneck effect)

PDFs:

- ln(rho), plotted with Gaussian fit and estimated b parameter (use IDL tool)
- u, delta u, |B|
- Scatter plots of Emag / Ekin versus rho

Science: Link to fragmentation (IMF peak and BD abundance)
Equipartition level for B (super-Alfvenic clouds) --> Wednesday
Comparison with observations

Structure Functions:

- Transversal and longitudinal structure functions of (use IDLor Fortran tools)
- Structure functions of rho^{1/3} u_{x,y,z}, log(rho), density masks

Images:

- Images of log of projected density (three axis directions)
- Single front slice of log(rho) (not for SPH)
- Thick front slice (5% of box size)

Science: How far in time before the comparison can be only statistical?