Submillimeter observations of high-mass star formation

Floris van der Tak (SRON Groningen)

Outline

Introduction

- Low mass star formation
- High mass stars and stellar clusters

Methodology

- Observations: wavelengths and scales
- Models: gas and dust

Results

- Chemical clocks
- Tracing invisible radiation
- Multiple deuteration: Initial conditions
- AFGL 2591: A massive disk of dust and water
- Cosmic-ray ionization

Conclusions

"Standard model" of low-mass star formation

THE FORMATION OF STELLAR CLUSTERS

Pre-stellar phase

Complex of infrared dark clouds

Warm molecular phase

Submm spectrum of warm gas

Compact ionized phase

Radio image of plasma pockets

Cloud disruption phase

Mid-infrared image of hot dust

Challenges:

more rapid (<0.1 Myr) more distant (> 1 kpc) more crowded entirely embedded (A_V > 100)

High-mass star formation: outstanding questions

How does collapse begin?

loss of turbulent / magnetic support; triggering

Feedback effects in clustered star formation? does mass spectrum (IMF) depend on stellar density

Nature of star-disk interaction? prospects of forming planets

Effect on galaxy evolution? origin & evolution of winds / outflows

Observational tools

Modeling approach

DUST

input:

luminosity dust opacities trial n(r)^p

selfco<mark>nsi</mark>stent radiativ<mark>e</mark> transfer

 $T_{dust}(r)$

l.o.s. integration, beam convolution gas/dust=100

synthetic SED and maps

Comp<mark>ar</mark>e with submm data (χ²statistic)

column density bestfit p **GAS**

input:

trial abundance x(r)molecular data $T_{gas} = T_{dust}$

Monte Car<mark>lo</mark> excitation + line radiative transfer

level populations

l.o.s. in<mark>te</mark>gration, beam convolution, velocity integration

synthetic line fluxes

Compare with data (X² statistic)

bestfit x(r) check on T(r), n(r)

input: initial abundances chemical network

Heating + cooling balance

molecular data

 $T_{gas}(r)$

Full chemical model

abundances x(r,t)

Monte Carlo excitation + line radiative transfer

synthetic line fluxes

Compa<mark>re</mark> with data (χ²statistic)

bestfit time, cosmic ray rate,

Empirical model

Full chemical model

Submm emission lines: Density structure

Model for AFGL 2591

Sulphur: A chemical clock

Molecules freeze onto dust in dense clouds Protostar warms up: evaporate & react Use abundance profile to estimate $t \sim 30,000$ yr Jumps confirmed by recent SMA images Next: include stellar evolution and gas dynamics into model

Chemistry tracing invisible radiation

Massive stars emit strong X-rays, but when do they start?

- Protostellar X-rays affect chemistry on <1000 AU scales
- Pronounced peaks in SO and CS seen in SMA data of AFGL 2591: $L_{\rm X}$ / $L_{\rm bol}$ >~ 10^{-6}

Benz et al 2007

Pre-stellar cores: Initial conditions of star formation

Molecular D/H ratios enhanced by 10^{15} driven by >99% CNO freeze-out Major charge carriers: H_2D^+ & D_2H^+ and grains. CO not a good gas tracer!

Chemistry gives handle on grain sizes:

charge balance magnetic pressure thermal balance support against gravitational collapse grain growth will continue within protoplanetary disks!

Kinematics of molecular ions toward the pre-stellar core L1544

Double-peaked H₂D⁺ line profile

like HCO⁺ and N₂H⁺ but probes smaller radii

Several major implications:

- 1. density centrally peaked (no flattening) expect ~constant accretion rate
- 2. gas temperature does not decrease decoupled from dust: grain growth
- 3. infall velocity increases inward inside-out collapse
- 4. motion outer layers < thermal speed limits role of turbulence (unlike IRDC!)

Van der Tak et al 2005

A dust and water disk around AFGL 2591

- High-mass stars may form through disk accretion
 - like low-mass stars (coagulation is exception)
 - but massive circumstellar disks hard to see
- Need high spatial and spectral resolution
 - and avoid foreground gas
- Bure 1.3 mm map:

$$- M = 0.8 M_0 = 5\% \text{ of } M_*$$

<< MHD simulations: evolved?

$$-a/b = 0.8$$
, so $i = 30^{\circ}$

- dust $\beta = 1$: grain growth

IRAM PdB observations of H₂¹⁸O at 203 GHz

Velocity gradient ~ Kepler speed around 16 M₀ star

Column too high and orientation wrong for outflow

 $H_2O/H_2 \sim 10^{-4}$: evaporated ice

Next step is to resolve velocity field (ALMA)

Can now get good handle on disk properties! (e.g., massive = unstable = high accretion rate?)

and mid-IR absorption lines)

Ionization rate of molecular gas

- Influence of magnetic fields on dynamics
 - efficiency of support against gravitational collapse
- Time scale of ion-molecule reactions
 - dominate gas-phase chemistry at $T \sim 10 \text{ K}$, $n \sim 10^4 \text{ cm}^{-3}$
- Mostly by cosmic rays except close to stars
 - low-E (~100 MeV) p from SNR

Detection of CO⁺ and SO⁺ toward AFGL 2591: Stäuber et al 2007

Probing the cosmic-ray ionization rate

Ionization Structure of GL 2136

Dense clouds: $\zeta \sim 3 \times 10^{-17} \text{ s}^{-1}$ (Van der Tak & van Dishoeck 2000) in good agreement with Voyager / Pioneer results at 65 AU

Local diffuse clouds: 10 x more (McCall et al 2003; Le Petit et al 2004)

Local pre-stellar core: 10 x less (Caselli et al 2002)

Sgr A region: 100 x more (Oka et al 2005)

Variation linked to propagation effects or CR flux?

Galactic center: high cosmic-ray flux seen in many other tracers

HESS contours on Fe Kα image (Aharonian et al 2006)

Submm + VLA 20 cm + Chandra 6.4 keV (Yusef-Zadeh et al 2007)

Sgr B2: strong widespread H₃O⁺ emission

$$H_3O^+ / H_2O = 1/50$$
, $\zeta = 3.5 \times 10^{-16} \text{ s}^{-1}$

Implications for ζ

- Ionization rate in Galactic Center 10x higher than in Solar neighbourhood: effect of cosmic-ray flux
 - consistent with γ -ray and synchrotron data
 - possibly extra ionization by X-rays
- Ionization rate of dense gas 3x lower than for diffuse clouds: propagation effect
 - absorption takes $\Sigma = 50$ g/cm²: unlikely
 - scattering off plasma waves: more efficient in denser clouds with stronger magnetic fields (Padoan & Scalo 2005): explains observed trend

An alternative view

- Orion, M17 PDRs: HI Zeeman data indicate strong B : structure dominated by magnetic not gas pressure?
 - gas pushed out by starlight momentum
 - B-field lines compressed: CR density enhanced
- High CR rate = result not cause of star formation
 - need to measure ζ in regions of known B to find out
 - expect correlation of CR flux with stellar L

Pellegrini et al 2007

Detection of extragalactic H₃O⁺

- •Arp 220: prototype merger
- -- ISO detection of H₂O
- -- d = 72 Mpc
- -- ULIRG
- •M82: prototype starburst
- -- IRAM 30m detection of CO⁺
- -- d = 4 Mpc
- •Detect the line in both nuclei!
- -- Central velocity and width as expected; no other plausible ID
- -- Two *V*-components in M82

Abundance ~few 10⁻⁹ exceeds Sgr B2!

Scale: 10'' = 100 pc

Origin of high ionization

- For M82, a PDR model with $G_0 = 10^{3.5} \& \zeta = 100\zeta_0$ reproduces the H_3O^+ column density and abundance.
- --> evolved starburst (UV from stars, CR from supernovae)
- --> consistent with earlier models (Förster Schreiber et al 2003)
- The Arp 220 data require an XDR with $F_X = 16$ erg/s/cm²: Sign of AGN activity.
- --> very high $N(H_2) = 10^{24}$ cm⁻² should attenuate any radiation?
- --> H₃O⁺ located in surrounding CO-absorbing torus?

Conclusions

- Submm observations: A cornerstone of astrophysics
 - essential to probe origin of stars and planets
 - applications from comets to high-z galaxies
 - measure fundamental physical parameters
- Molecular studies of star-forming regions useful to:
 - estimate ages of protostars
 - probe kinematics of star formation
 - measure properties of circumstellar disks
 - measure ionization rate across the Galaxy .. if not the Universe!