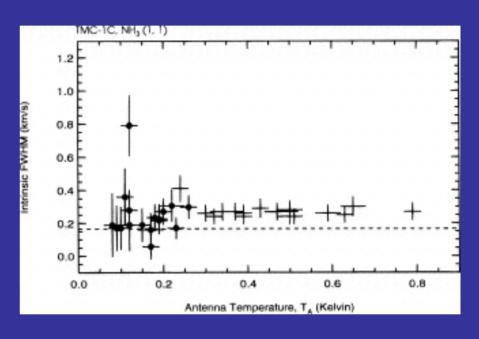
# Formation and Lifetimes of Molecular Cloud Cores

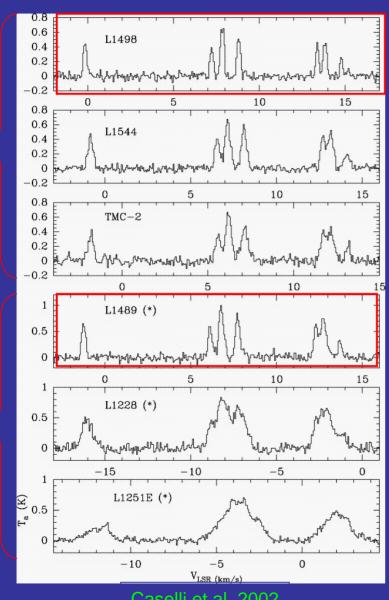
Enrique Vázquez-Semadeni

Centro de Radioastronomía y Astrofísica, UNAM

# **Collaborators:**

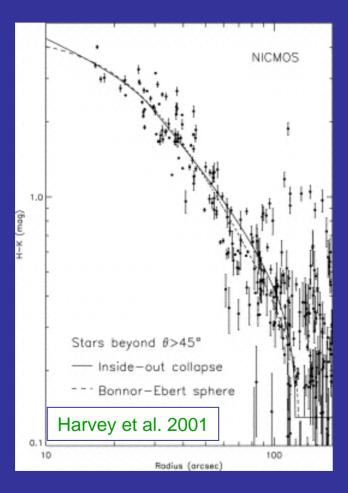

CRyA UNAM:
Roberto Galván-M.
Gilberto Gómez
Javier Ballesteros-P.
Ricardo González

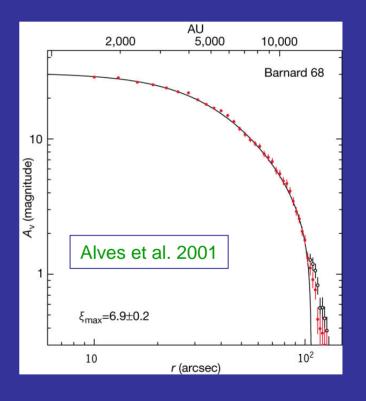
ABROAD:
Mohsen Shadmehri (Dublin)
Jongsoo Kim (KASI, Korea)


# Introduction

- Molecular cloud (MC) cores are believed to be turbulent density fluctuations formed by the supersonic turbulence in the clouds (e.g., Sasao 1973; Elmegreen 1993; Vázquez-Semadeni 1994; Padoan 1995; Passot & Vázquez-Semadeni 1998; Ballesteros-Paredes et al. 1999).
- On the other hand, MC cores are known to often be
  - Quiescent: with subsonic internal velocity dispersions,
  - Coherent: with radius-independent velocity dispersions,
  - Bonnor-Ebert-like.
  - Relatively long-lived, with lifetimes of several times the free-fall time.

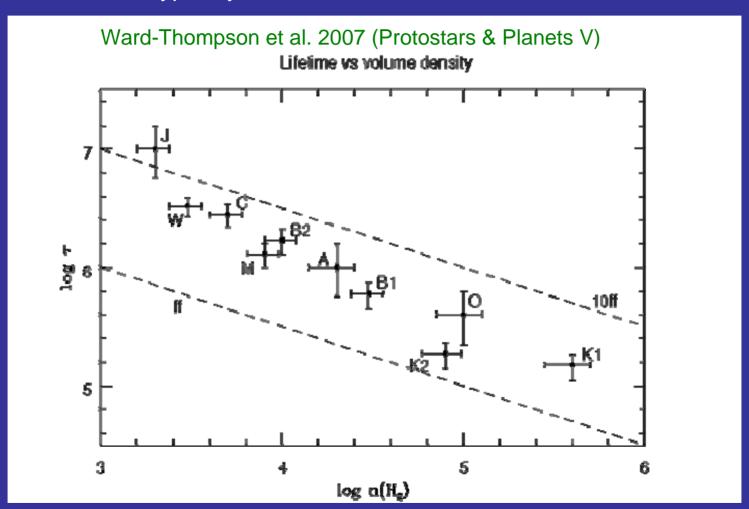
# Quiescence and coherence





Barranco & Goodman 1998



Caselli et al. 2002


# Bonnor-Ebert profiles:





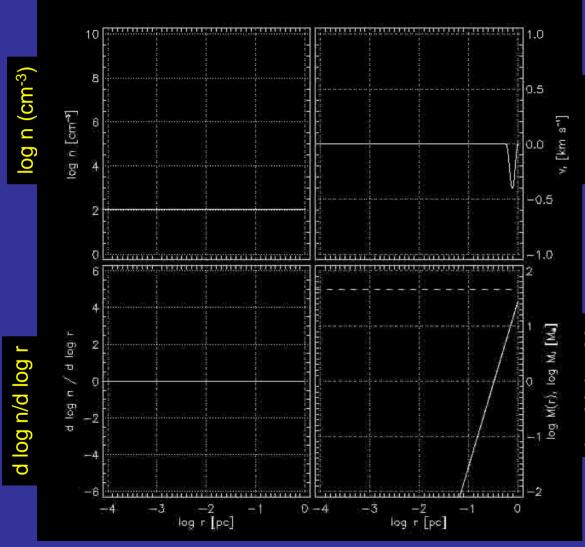
# Lifetimes

Typically several times the free-fall time.



- It is often thought that cores formed by turbulent density fluctuations in driven, magnetically supercritical turbulent environments have
  - Arbitrary density profiles (inconsistent with high observed fraction of BElike profiles),
  - Too short lifetimes ( $\sim 1 \tau_{\rm ff}$ ),
  - Too large velocity dispersions (too high a fraction of transonic or supersonic cores).

#### Actually,


- Ballesteros-Paredes et al. (2003) and Hartmann (2004) suggested angular- and LOS-averaging can cause apparent BE-like column density profiles.
- Klessen et al. (2005) found ~25% of quiescent cores in numerical simulations of HD, driven, self-gravitating turbulence.
- Vázquez-Semadeni et al. (2005) observed core lifetimes 1.5-6  $\tau_{\rm ff}$  in MHD simulations.
- Whitworth et al (2007) suggested core formation naturally involves a delay before collapse and BE structures.

#### This work:

- Detailed investigation of idealized 1D spherical model of core formation.
  - Do BE-profiles arise naturally?
  - Does a quiescent structure arise naturally?
- Systematic measurement of core lifetimes and number ratios in 3D
   MHD simulations of magnetically supercritical isothermal clouds.

- I. Numerical simulations of compression-induced core formation in non-magnetic, spherically symmetric clouds (Gómez, VS, Shadmehri, & Ballesteros-P. 2007, ApJ in press, arXiv/0705.0559; see also Hennebelle et al. 2003 and Whitworth et al. 2007).
  - Spherical compression justified because focusing is necessary to induce collapse in isothermal media (McKee et al. 1993; VS et al 1996; Whitworth et al 2007)
  - Features:
    - R = 1 pc  $n = 110 \text{ cm}^{-3} \sim 0.7 \text{ n}_J$  T = 11.4 K $c_s = 0.2 \text{ km s}^{-1}$
- → Jeans *stable*. (Unconfined)
- Compressive velocity pulse:
  - centered at  $r_0 = 1/3 R$ , 2/3 R,
  - width ~ 0.1 pc (finite duration),
  - amplitude 2c<sub>s</sub>.
- Look at core formation process, before collapse.

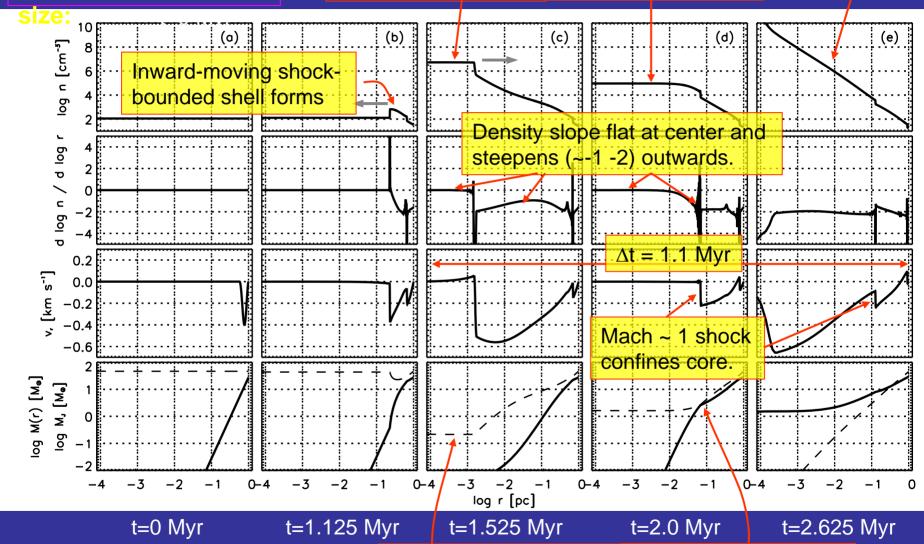
• A collapsing case.  $r_0 = 2/3 \text{ pc}$ 




Core starts out with negligible self-gravity, at uniform (high) density.

Core mass eventually overtakes M<sub>J</sub>, and core collapses.

— M(r)


---- M<sub>J</sub>(r)



Non-self-gravitating central core with high uniform density.

Self-gravitating central core with BE-like density profile.

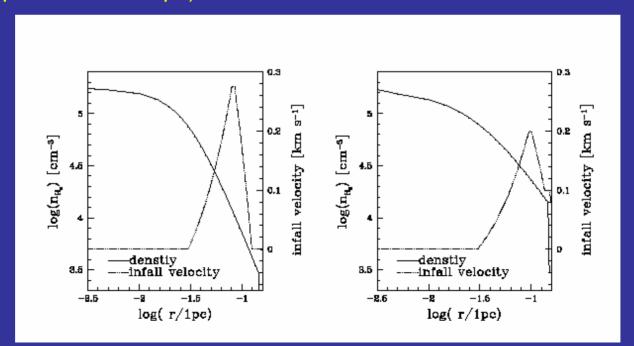
Collapsed core, with SIS profile.



Gómez et al. 2007, ApJ in press, arXiv/0705.0559

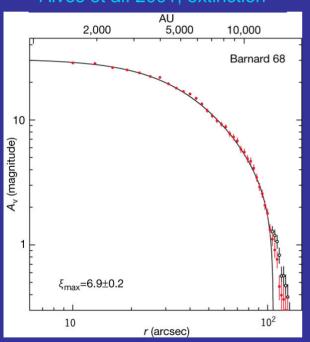
Jeans mass decreases in central dense core.

Core's mass catches up with Jeans mass.


11

# Summary of evolution:

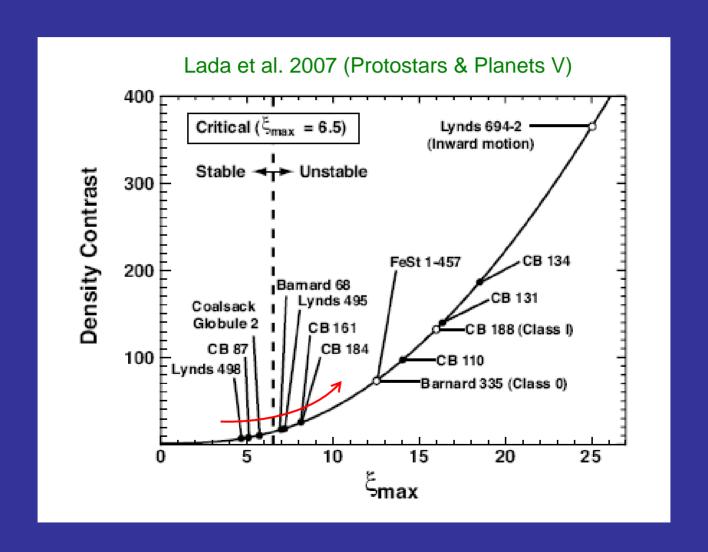
- Start with Jeans-stable, uniform region, with compressive pulse.
- Compressive wave forms a shock-bounded shell of infalling material.
- Inner shock reaches center and rebounds, leaving a high-density, zero-velocity spherical region inside (a quiescent core).
- Quiescent core accretes mass from the shell, mediated by a shock.
- Core's evolution:
  - Initially its self-gravity is negligible, so has uniform density, and is confined by ram pressure.
  - As it grows in mass and size, self-gravity becomes increasingly dominant, developing curved density profile – a ram-pressureconfined, growing, stable BE sphere.
  - Eventually, the core may become Jeans-unstable and collapse (an unstable BE sphere).
  - Lifetime ~ 1 Myr: 0.5 Myr to grow, and 0.5 Myr to collapse.


### Preliminary comparison with observations:

- Central core is quiescent.
- Envelope infalling at transonic speeds.
- Compares well to, e.g.,
  - Lee et al. 1999; Caselli et al. 2002; Tafalla et al. 2004: subsonic inflow line profiles. Detailed radiative transfer study coming soon (Ballesteros-Paredes, Vázquez-Semadeni & Gómez 2007).
  - Lee et al. 2007 (ApJ accepted, astro-ph/0702330): velocity profile inferred from radiative transfer model for cores L694-2 and L1197: transonic peak at r ~ 0.1 pc).



- Preliminary comparison with observations (cont'd):
  - Core+envelope structure has profile with flat center and r<sup>-1.5</sup>—r<sup>-2</sup> outskirts. Compares well to profiles of prestellar cores obtained from extinction and submm continuum maps.


Alves et al. 2001, extinction



Shirley et al. 2000, submm continuum



#### ... and evolves along the stability sequence:



#### Conclusions:

- "Focused" turbulent compressions in spherically-symmetric isothermal clouds produce cores that (see also Whitworth et al. 2007)
  - Are ram-pressure confined, growing BE spheres.
  - Evolve from stable to unstable configurations.
  - Are quiescent inside.
  - Have a build-up stage that lasts as long as the collapse stage.
    - The collapse stage itself lasts  $\sim 2 \tau_{\rm ff}$ .

# The End