KITP lunch talk, August 10, 2007

Primordial Star Formation

Naoki Yoshida

As a representative of PopIII community

Cosmological background, basics

State-of-the-art numerical simulations

Fragmentation and massive primordial stars

Simulating primordial star formation

With a little exaggeration, we say

we know:

1. The initial condition

- parameter space exploration not needed
- dark matter physics issue not serious

2. The equations to solve

- gravity, hydro, chemistry, radiation transfer. well-established physics

Furthermore, we believe magnetic field, dust, cosmic-rays aren't important within the standard model

←This is the initial condition

A + Cold Dark Matter model

Dark energy+dark matter+baryons (H, He, D)+CMB

Gaussian random field (inflation)

=> We need only a power spectrum

Star-formation in the early universe

Cosmological recombination at z = 1089

 \downarrow

Non-linear structure formation and dark halo assembly

Virialization and H2 formation (gas-phase using the left-over electrons)

Molecular cloud formation at the center of DM halos

 \downarrow

Runaway collapse when a cloud gets large enough (=What cosmology people call "star-formation")

"Cosmological" molecular gas clouds

NY, Abel, Hernquist, Sugiyama (2003, ApJ)

Yellow spots at the intersections of filaments "1 cloud per halo"

Host dark halos: M ~ 10⁶ Msun Tvir ~ 1000 K

Strongly clustered, large bias

The Physics

adiabatic phase

Sufficient computer power, good enough resolution

First stars likely massive

Abel+02, Bromm+02, Omukai & Palla03, Yoshida+06

- 1 Large Jeans-mass at the onset of collapse (a reservoir of ~ 1000 Msun gas, but overall very low star-formation efficiency)
- 2 No vigorous fragmentation during the final collapse
- 3 Large accretion rate (high Tambient envelope) dM/dt ~ Cs³/G > 0.01 - 0.001 Msun/yr

Primordial proto-star: a tiny hyper-accreting seed in a large cloud

Convergence, discrepancy, but no puzzles

The (comlicated) issue of fragmentation

- 1 Chemo-thermal instability Yes, but No in the end.
- 2 Gravitational deformation No. Effective EoS marginally hard.
- 3 Rotation-induced break up Much dependent of details.

A yet unsolved problem of fragmentation

Bromm et al. 99

Clark, Glover, Klessen 07

"From pre-stellar collapse to proto-stellar evolution" Things to explore further are:

- O. Prestellar collapse tothe adiabatic phase
- 1. Accretion process, disk accretion
- 2. Feedback from the proto-star to its environment
- 3. "Cosmological" variance