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Stellar Mass Fraction vs. Halo Mass
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Outflow Mass Scaling with Halo Mass

* Greater gravitational potential with increasing halo
mass

* Higher density environment with increasing halo mass
(Oppenheimer+’10)

* Over virial masses from 5x10° — 10! M__, how do
outflow properties scale?

e Qutflow Mass
* Mass Loading
* Velocity

* Recycling

* Metallicity

* Origin



Modeling Stellar Feedback

* Given a hydrodynamic code that produces
galaxies with reasonably realistic properties,
using a physically-motivated, tuned model for
stellar feedback, let’s back out information
about outflow properties



Code: Gasoline

(Wadsley+ 2004)

SPH code

Cosmic UV background radiation

H & He ionization; non-equilibrium H, (christensen+ 2012)
Metal line cooling and metal diffusion (shen+ 2010)

Probabilistic star formation based on free-fall time
and H, abundance (shielded fraction) (christensen+ 2012)

Supernovae feedback from type Il and type la
(blastwave, E¢,=10°! ergs) (stinson+ 2006)



Blastwave Model for Feedback

 Thermal energy is transferred to gas particles near the star

* Cooling is disabled for the period of time equal to the

momentum-conserving (snowplow) phase of the
blastwave

* function of E, P and p (Mc_Kee and Ostriker 1977)

10685 70.32..0.34 $—0.70
tmax = 1077 Esi7 ny™" Py, ' yr.

* The hot particle will naturally rise from the disk (no kick
needed, no information about the halo included)



Simulations

e 20 central galaxies from zoom-in, cosmo sims.
* Virial masses at z = 0 from 5x10° — 10%* M

* Gas particle masses: 3300M, or 25,000M

e Softening lengths: 87 or 170 pc




Baryonic Tully-Fisher
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(500 pc)

Matter Distribution within Galaxy

Cored Profiles
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Cumulative SFH
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Current blastwave feedback model may be insufficient to properly
reduce SF at high-z (high 27?) in larger mass galaxies. (See Stinson+ 2012,
Hopkins+ 2013, Agertz+ 2014 for discussion on effects of early stellar
feedback and Keller+ 2014 for another approach).



Disk Gas
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Baryonic Fraction
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* Lower rates of accretion in smaller galaxies
* Gas outflows are critical to further suppressing baryon fraction



Tracking Particles

Outflowing gas:
* Must have been affected by supernova
 Must have once been in the disk
 Heated:
e OQOutflowing gas no longer considered part of the disk

* Ejected from disk:

* OQOutflowing gas which has kinetic energy
greater than potential energy from the disk

. R

e OQOutflowing gas which reaches
beyond 0.2 * the virial radius

Expelled:

e OQOutflowing gas which reaches
virial radius

(100 Myr time resolution)

)|




Mass [Mg]

Total Mass Ejected and Expelled
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Mass Ejected / Stellar Mass Formed

(1 Gyr time bin)
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Fraction of Disk Gas Ejected/Expelled
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Velocities of Ejected Material
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Velocities of Ejected Material
Scaled by Circular Velocity
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Median
Velocities of
Ejected and
Expelled Gas
immediately
after they

leave the
disk
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How much of the ejected gas is later
recycled?
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Number of Times a Particle is Reaccreted

Ejected Particles
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Number of Times a Particle is Reaccreted
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Fraction of Ejected Gas Eventually
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As halo mass increases, a higher fraction of the
gas with velocities sufficient to escape the disk
is able to escape the halo
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Amount of Time Before Recreation
after Ejection or Expulsion

Median Time in Outflow [Gyr]
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Wide spread in reaccretion time scales (non-gaussian distribution with tail towards
long times).

Typical time scales of reaccretion on the order of a gigayear or so.

Dependent on feedback implementation (see Ben Oppenheimer’s talk).
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Metal
Enrichment
of Outflows
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Metal Surface Density

-30 =20 -10 O 10 20 30

x/kpe

Mass

y/kpe

-30-20-10 0 10 20 30

—>
gﬁ. Ay,
; xS :
-40 =20 0 20 40 =50 0 50
x/kpe z/kpe z/kpe

Log Metallicity of Gas (slice through center of galaxy)




Eventual Location of Metals

M, in galaxies/M, avaliable
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Eventual Location of Metals

M, in galaxies/M, avaliable
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Note that Peeples+ ‘14 does not include stellar remnants in analysis




Summary

Power-law relation between virial mass and mass loading, similar to
energy-driven winds

* However, lower SFRs in dwarf galaxies also reduce mass loss
Gas cycling is significant but lower than in previous works
* Median recycling timescales of 1 Gyr

* Sensitive to feedback implementation, CGM properties, gas cooling
etc.

Evidence for enhanced fraction of gas in dwarf galaxies able to
escape disk but not halo

Outflows primarily originate from the same area as star formation
Outflows have substantially higher metallicity than disk gas
* More metals locked up in stars than observations suggest

Open problems
 Comparing to observations
* Higher redshifts evolution (can SFHs be affected by cycling?)



