Tracking Outflow Properties Across Galaxy Mass

Charlotte Christensen

University of Arizona

Romeel Davé, Andrew Pontzen, Fabio Governato

Stellar Mass Fraction vs. Halo Mass

Outflow Mass Scaling with Halo Mass

- Greater gravitational potential with increasing halo mass
- Higher density environment with increasing halo mass (Oppenheimer+ '10)
- Over virial masses from $5x10^9 10^{12}$ M_{sun}, how do outflow properties scale?
 - Outflow Mass
 - Mass Loading
 - Velocity
 - Recycling
 - Metallicity
 - Origin

Modeling Stellar Feedback

 Given a hydrodynamic code that produces galaxies with reasonably realistic properties, using a physically-motivated, tuned model for stellar feedback, let's back out information about outflow properties

Code: Gasoline (Wadsley+ 2004)

- SPH code
- Cosmic UV background radiation
- H & He ionization; non-equilibrium H₂ (Christensen+ 2012)
- Metal line cooling and metal diffusion (Shen+ 2010)
- Probabilistic star formation based on free-fall time and H₂ abundance (shielded fraction) (Christensen+ 2012)
- Supernovae feedback from type II and type Ia (blastwave, $E_{SN}=10^{51}$ ergs) (Stinson+ 2006)

Blastwave Model for Feedback

- Thermal energy is transferred to gas particles near the star
- Cooling is disabled for the period of time equal to the momentum-conserving (snowplow) phase of the blastwave
 - function of E, P and ρ (McKee and Ostriker 1977)

$$t_{\text{max}} = 10^{6.85} E_{51}^{0.32} n_0^{0.34} \tilde{P}_{04}^{-0.70} \text{ yr.}$$

 The hot particle will naturally rise from the disk (no kick needed, no information about the halo included)

Simulations

- 20 central galaxies from zoom-in, cosmo sims.
- Virial masses at z = 0 from $5x10^9 10^{12}$ M_{\odot}
- Gas particle masses: $3300 M_{\odot}$ or $25,000 M_{\odot}$
- Softening lengths: 87 or 170 pc

Observed relations of global properties at z = 0

Also, realistic sizes, and gas fractions

Matter Distribution within Galaxy

For discussion on outflows changing central density, see Governato+ '10, Guedes+ '11, Brook+ '11, Pontzen+ '12, Teyssier+ '13, Anglés-Alcázar+ '13, Christensen+ '13, Sijing Shen's talk

Star Formation Histories

Current blastwave feedback model may be insufficient to properly reduce SF at high-z (high Σ ?) in larger mass galaxies. (See Stinson+ 2012, Hopkins+ 2013, Agertz+ 2014 for discussion on effects of early stellar feedback and Keller+ 2014 for another approach).

Phase Diagram

Disk Gas:

ρ > 0.1 amu/cc

T < 1.2x10⁴

spatial cut

Baryonic Fraction

- Lower rates of accretion in smaller galaxies
- Gas outflows are critical to further suppressing baryon fraction

Tracking Particles

- Outflowing gas:
 - Must have been affected by supernoval
 - Must have once been in the disk
 - Heated:
 - Outflowing gas no longer considered part of the disk
 - Ejected from disk:
 - Outflowing gas which has kinetic energy greater than potential energy from the *disk*
 - Ejected beyond 0.2*Rvir
 - Outflowing gas which reaches beyond 0.2 * the virial radius
 - Expelled:
 - Outflowing gas which reaches virial radius
- (100 Myr time resolution)

Total Mass Ejected and Expelled

Mass Loading Factor for Ejected Material

Mass Loading Factor for Ejected Material

Fraction of Disk Gas Ejected/Expelled

Gas Heated by SN

Velocities of Ejected Material

Velocities of Ejected Material Scaled by Circular Velocity

Median **Velocities of Ejected and Expelled Gas** immediately after they leave the disk

How much of the ejected gas is later recycled?

Number of Times a Particle is Reaccreted

Never Reaccreted

Reaccreted once

Reaccreted twice

Reaccreted three times . . .

Number of Times a Particle is Reaccreted

Reaccreted three times . . .

Fraction of Ejected Gas Eventually Expelled

Fraction of Ejected Gas Eventually Expelled

As halo mass increases, a *higher* fraction of the gas with velocities sufficient to escape the disk is able to escape the halo

Amount of Time Before Recreation after Ejection or Expulsion

- Wide spread in reaccretion time scales (non-gaussian distribution with tail towards long times).
- Typical time scales of reaccretion on the order of a gigayear or so.
- Dependent on feedback implementation (see Ben Oppenheimer's talk).

Source of Ejected Material

Ejected gas originates from approximately the same area as star formation

Metal Enrichment of Outflows

Metal Surface Density 20 10 0 -10-20 -50 0 50 -30 -20 -10 -40 -20 -20 -10 10 20 10 20 20 40 x/kpc x/kpc x/kpc x/kpc Mass 20 10 y/kpc -10-20 -20 -10 -50 0 10 -30-20-10 0 0 50 10 20 30 -40 -20 20 0 x/kpc x/kpc x/kpc x/kpc

Log Metallicity of Gas (slice through center of galaxy)

Eventual Location of Metals

Eventual Location of Metals

Note that Peeples+ '14 does not include stellar remnants in analysis

Summary

- Power-law relation between virial mass and mass loading, similar to energy-driven winds
 - However, lower SFRs in dwarf galaxies also reduce mass loss
- Gas cycling is significant but lower than in previous works
 - Median recycling timescales of 1 Gyr
 - Sensitive to feedback implementation, CGM properties, gas cooling etc.
- Evidence for enhanced fraction of gas in dwarf galaxies able to escape disk but not halo
- Outflows primarily originate from the same area as star formation
- Outflows have substantially higher metallicity than disk gas
 - More metals locked up in stars than observations suggest
- Open problems
 - Comparing to observations
 - Higher redshifts evolution (can SFHs be affected by cycling?)