Angular Momentum and Galaxy Formation

Michael Fall STScI

Specific Angular Momentum vs Mass

S and E galaxies offset by ~6x

Proposed Connection Between the Hubble Sequence and the *j* vs *M* Diagram

Needs Testing

Dark Matter Simulations

Barnes & Efstathiou 1987

$$j = J/M \alpha M^{\alpha}$$
 with $\alpha \approx 0.7$

Questions

- 1. Are the estimates of j accurate for E galaxies (with measured v_{rot} only to $\sim R_{\text{e}}$)?
- 2. Where do galaxies of intermediate Hubble type (Sa & S0) lie in the *j* vs *M* diagram?
- 3. Does the observed spread in galactic log *j* at each *M* match that of DM halos?
- 4. What causes the ~6x offset between pure disks (Sc galaxies) and pure bulges (E galaxies)?

New Work

Romanowsky & Fall 2012 ApJS Fall & Romanowsky 2013 ApJL

- Sample analyzed: 57 S galaxies, 15 S0 galaxies, 23 E galaxies.
- All with surface photometry (including D/B decompositions) and extended kinematics
- Analysis of S galaxies is straightforward.
- For E and S0 galaxies, kinematic data extend to large radii, $>2R_e$ in all cases, $>4R_e$ in many.
- We use data from the SAGES program (Brodie, Romanowsky, Forbes, Arnold, Strader, et al).

New Kinematic Data Extend to 2--10 $R_{\rm e}$

New j vs M Diagram

 $j = J/M \alpha M^{\alpha}$ with $\alpha \approx 0.6$

Disks and E galaxies offset by ~5x

New j vs M Diagram

Intermediate-type galaxies lie between D and E sequences.

Offset in log j vs Hubble Type and Bulge Fraction

These correlations are highly significant. We do not know how much of the scatter is real.

Rotation Velocity vs Mass

For S galaxies, this is essentially the T-F relation. For E galaxies, it is something very different.

Distribution of Offsets in log j

The distribution is different from $p(\log \lambda)$ for DM halos. For E galaxies, it is broader; for S galaxies, it is narrower.

This toy model gives: $f_j \sim 0.8$ for Sc galaxies $f_j \sim 0.1$ for E galaxies

Other Processes

Each process affecting galaxies can be represented by a vector $(\Delta M, \Delta j)$ in the j vs M diagram.

The sum of all these vectors must map the predicted DM halo sequence onto the observed galactic sequences.

Zavala et al. 2008

Dashed lines show the specific angular momentum as a function of time for the dark matter that, at z= 0, lies within the virial radius of the system for NF (left-hand panel) and E-0.7 (right-hand panel).

Scannapieco C et al. MNRAS 2008;389:1137-1149

Kravtsov 2013

Summary

- 1. New *j* vs *M* diagram based on extended kinematic data for E and S0 galaxies.
- 2. Old *j* vs *M* diagram confirmed, in slopes and offsets between disks and E galaxies.
- 3. The *j* vs *M* diagram is closely related to the Hubble sequence; galaxies of intermediate types have intermediate *j* at each *M*.
- 4. The observed sequences in the *j* vs *M* diagram are fundamental "targets" for simulations.
- 5. Recommend plotting trajectories of evolving simulated galaxies in the *j* vs *M* diagram.

Thanks